Online: | |
Visits: | |
Stories: |
We’ve all wondered at some point or another what mysteries our Solar System holds. After all, the eight planets (plus Pluto and all those other dwarf planets) orbit within a very small volume of the heliosphere (the volume of space dominated by the influence of the Sun), what’s going on in the rest of the volume we call our home? As we push more robots into space, improve our observational capabilities and begin to experience space for ourselves, we learn more and more about the nature of where we come from and how the planets have evolved. But even with our advancing knowledge, we would be naive to think we have all the answers, so much still needs to be uncovered. So, from a personal point of view, what would I consider to be the greatest mysteries within our Solar System? Well, I’m going to tell you my top ten favourites of some more perplexing conundrums our Solar System has thrown at us. So, to get the ball rolling, I’ll start in the middle, with the Sun.
Why is the Sun’s South Pole cooler than the North Pole? For 17 years, the solar probe Ulysses has given us an unprecedented view of the Sun. After being launched on Space Shuttle Discovery way back in 1990, the intrepid explorer took an unorthodox trip through the Solar System. Using Jupiter for a gravitational slingshot, Ulysses was flung out of the ecliptic plane so it could pass over the Sun in a polar orbit (spacecraft and the planets normally orbit around the Sun’s equator). This is where the probe journeyed for nearly two decades, taking unprecedented in-situ observations of the solar wind and revealing the true nature of what happens at the poles of our star. Alas, Ulysses is dying of old age, and the mission effectively ended on July 1st (although some communication with the craft remains). However, observing uncharted regions of the Sun can create baffling results. One such mystery result is that the South Pole of the Sun is cooler than the North Pole by 80,000 Kelvin. Scientists are confused by this discrepancy as the effect appears to be independent of the magnetic polarity of the Sun (which flips magnetic north to magnetic south every 11-years). Ulysses was able to gauge the solar temperature by sampling the ions in the solar wind at a distance of 300 million km above the North and South Poles. By measuring the ratio of oxygen ions (O6+/O7+), the plasma conditions at the base of the coronal hole could be measured. This remains an open question and the only explanation solar physicists can currently come up with is the possibility that the solar structure in the polar regions differ in some way. It’s a shame Ulysses bit the dust, we could do with a polar orbiter to take more results (see Ulysses Spacecraft Dying of Natural Causes).
Why are the Martian hemispheres so radically different? This is one mystery that had frustrated scientists for years. The northern hemisphere of Mars is predominantly featureless lowlands, whereas the southern hemisphere is stuffed with mountain ranges, creating vast highlands. Very early on in the study of Mars, the theory that the planet had been hit by something very large (thus creating the vast lowlands, or a huge impact basin) was thrown out. This was primarily because the lowlands didn’t feature the geography of an impact crater. For a start there is no crater “rim.” Plus the impact zone is not circular. All this pointed to some other explanation. But eagle-eyed researchers at Caltech have recently revisited the impactor theory and calculated that a huge rock between 1,600 to 2,700 km diameter can create the lowlands of the northern hemisphere (see Two Faces of Mars Explained). Bonus mystery: Does the Mars Curse exist? According to many shows, websites and books there is something (almost paranormal) out in space eating (or tampering with) our robotic Mars explorers. If you look at the statistics, you would be forgiven for being a little shocked: Nearly two-thirds of all Mars missions have failed. Russian Mars-bound rockets have blown up, US satellites have died mid-flight, British landers have pock-marked the Red Planet’s landscape; no Mars mission is immune to the “Mars Triangle.” So is there a “Galactic Ghoul” out there messing with our ‘bots? Although this might be attractive to some of us superstitious folk, the vast majority of spacecraft lost due to The Mars Curse is mainly due to heavy losses during the pioneering missions to Mars. The recent loss rate is comparable to the losses sustained when exploring other planets in the Solar System. Although luck may have a small part to play, this mystery is more of a superstition than anything measurable (see The “Mars Curse”: Why Have So Many Missions Failed?).
What caused the Tunguska impact? Forget Fox Mulder tripping through the Russian forests, this isn’t an X-Files episode. In 1908, the Solar System threw something at us… but we don’t know what. This has been an enduring mystery ever since eye witnesses described a bright flash (that could be seen hundreds of miles away) over the Podkamennaya Tunguska River in Russia. On investigation, a huge area had been decimated; some 80 million trees had been felled like match sticks and over 2,000 square kilometres had been flattened. But there was no crater. What had fallen from the sky? This mystery is still an open case, although researchers are pinning their bets of some form of “airburst” when a comet or meteorite entered the atmosphere, exploding above the ground. A recent cosmic forensic study retraced the steps of a possible asteroid fragment in the hope of finding its origin and perhaps even finding the parent asteroid. They have their suspects, but the intriguing thing is, there is next-to-no meteorite evidence around the impact site. So far, there doesn’t appear to be much explanation for that, but I don’t think Mulder and Scully need be involved (see Tunguska Meteoroid’s Cousins Found?).
Why does Uranus rotate on its side? Strange planet is Uranus. Whilst all the other planets in the Solar System more-or-less have their axis of rotation pointing “up” from the ecliptic plane, Uranus is lying on its side, with an axial tilt of 98 degrees. This means that for very long periods (42 years at a time) either its North or South Pole points directly at the Sun. The majority of the planets have a “prograde” rotation; all the planets rotate counter-clockwise when viewed from above the Solar System (i.e. above the North Pole of the Earth). However, Venus does the exact opposite, it has a retrograde rotation, leading to the theory that it was kicked off-axis early in its evolution due to a large impact. So did this happen to Uranus too? Was it hit by a massive body? Some scientists believe that Uranus was the victim of a cosmic hit-and-run, but others believe there may be a more elegant way of describing the gas giant’s strange configuration. Early in the evolution of the Solar System, astrophysicists have run simulations that show the orbital configuration of Jupiter and Saturn may have crossed a 1:2 orbital resonance. During this period of planetary upset, the combined gravitational influence of Jupiter and Saturn transferred orbital momentum to the smaller gas giant Uranus, knocking it off-axis. More research needs to be carried out to see if it was more likely that an Earth-sized rock impacted Uranus or whether Jupiter and Saturn are to blame.
Why does Titan have an atmosphere? Titan, one of Saturn’s moons, is the only moon in the Solar System with a significant atmosphere. It is the second biggest moon in the Solar System (second only to Jupiter’s moon Ganymede) and about 80% more massive than Earth’s Moon. Although small when compared with terrestrial standards, it is more Earth-like than we give it credit for. Mars and Venus are often cited as Earth’s siblings, but their atmospheres are 100 times thinner and 100 times thicker, respectively. Titan’s atmosphere on the other hand is only one and a half times thicker than Earth’s, plus it is mainly composed of nitrogen. Nitrogen dominates Earth’s atmosphere (at 80% composition) and it dominates Titans atmosphere (at 95% composition). But where did all this nitrogen come from? Like on Earth, it’s a mystery. Titan is such an interesting moon and is fast becoming the prime target to search for life. Not only does it have a thick atmosphere, its surface is crammed full with hydrocarbons thought to be teeming with “tholins,” or prebiotic chemicals. Add to this the electrical activity in the Titan atmosphere and we have an incredible moon with a massive potential for life to evolve. But as to where its atmosphere came from… we just do not know.
21 Apr, 2014