Australian scientists created a computer simulation in which quantum particles can move back in time. This might confirm the possibility of time travel on a quantum level, suggested in 1991. At the same time, the study revealed a number of effects which are considered impossible according to the standard quantum mechanics.
Using photons, physicists from the University of Queensland in Australia simulated time-traveling quantum particles. In particular, they studied the behavior of a single photon traveling back in time through a wormhole in space-time and interacting with itself. This time-traveling loop is called a closed timelike curve, i.e. a path followed by a particle which returns to its initial space-time point.
The physicists studied two possible scenarios for a time-traveling photon. In the first, the particle passes through a wormhole, moving back in time, and interacts with its older self. In the second scenario, the photon passes through normal space-time and interacts with another photon which is stuck in a closed timelike curve.
According to the researchers, their study will help to find a link between two great theories in physics:the Einstein’s general theory of relativity and quantum mechanics.
“The question of time travel features at the interface between two of our most successful yet incompatible physical theories – Einstein’s general relativity and quantum mechanics,” said Martin Ringbauer of the University of Queensland who led the study. “Einstein’s theory describes the world at the very large scale of stars and galaxies, while quantum mechanics is an excellent description of the world at the very small scale of atoms and molecules.”