Online:
Visits:
Stories:
Profile image
By American Kabuki
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

US Patent 8,655,899 B2 Tying DNA Sequences to Medical, Credit, Employment, Sexual History, and Income in Data Mining Databases

Tuesday, February 24, 2015 6:24
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Musings On The Finite Statist Machine

B4INREMOTE-aHR0cDovLzEuYnAuYmxvZ3Nwb3QuY29tLy1yb1FRbFZrdnFfVS9WT2VPOXZXQXF4SS9BQUFBQUFBQVExYy9JcmdrT0lTeU9HQS9zMTYwMC9pbWFnZS5qcGc=

https://www.google.it/patents/US8655899?dq=8655899&hl=en&sa=X&ei=i43nVIuZMIqBUbm1g_AN&ved=0CCAQ6AEwAA

DETAILED DESCRIPTION

Disclosed herein are methods, computer systems, databases and software for identifying combinations of attributes associated with individuals that co-occur (i.e., co-associate, co-aggregate) with attributes of interest, such as specific disorders, behaviors and traits. Disclosed herein are databases as well as database systems for creating and accessing databases describing those attributes and for performing analyses based on those attributes. The methods, computer systems and software are useful for identifying intricate combinations of attributes that predispose human beings toward having or developing specific disorders, behaviors and traits of interest, determining the level of predisposition of an individual towards such attributes, and revealing which attribute associations can be added or eliminated to effectively modify what may have been hereto believed to be destiny. The methods, computer systems and software are also applicable for tissues and non-human organisms, as well as for identifying combinations of attributes that correlate with or cause behaviors and outcomes in complex non-living systems including molecules, electrical and mechanical systems and various devices and apparatus whose functionality is dependent on a multitude of attributes.

Previous methods have been largely unsuccessful in determining the complex combinations of attributes that predispose individuals to most disorders, behaviors and traits. The level of resolution afforded by the data typically used is too low, the number and types of attributes considered is too limited, and the sensitivity to detect low frequency, high complexity combinations is lacking. The desirability of being able to determine the complex combinations of attributes that predispose an individual to physical or behavioral disorders has clear implications for improving individualized diagnoses, choosing the most effective therapeutic regimens, making beneficial lifestyle changes that prevent disease and promote health, and reducing associated health care expenditures. It is also desirable to determine those combinations of attributes that promote certain behaviors and traits such as success in sports, music, school, leadership, career and relationships.

Advances in technology within the field of genetics now provide the ability to achieve maximum resolution of the entire genome. Discovery and characterization of epigenetic modifications—reversible chemical modifications of DNA and structural modification of chromatin that dramatically alter gene expression—has provided an additional level of information that may be altered due to environmental conditions, life experiences and aging. Along with a collection of diverse nongenetic attributes including physical, behavioral, situational and historical attributes associated with an organism, the present invention provides the ability to utilize the above information to enable prediction of the predisposition of an organism toward developing a specific attribute of interest provided in a query.

There are approximately 25,000 genes in the human genome. Of these, approximately 1,000 of these genes are involved in monogenic disorders, which are disorders whose sole cause is due to the properties of a single gene. This collection of disorders represents less than two percent of all human disorders. The remaining 98 percent of human disorders, termed complex disorders, are caused by multiple genetic influences or a combination of multiple genetic and non-genetic influences, still yet to be determined due to their resistance to current methods of discovery.

Previous methods using genetic information have suffered from either a lack of high resolution information, very limited coverage of total genomic information, or both. Genetic markers such as single nucleotide polymorphisms (SNPs) do not provide a complete picture of a gene's nucleotide sequence or the total genetic variability of the individual. The SNPs typically used occur at a frequency of at least 5% in the population. However, the majority of genetic variation that exists in the population occurs at frequencies below 1%. Furthermore, SNPs are spaced hundreds of nucleotides apart and do not account for genetic variation that occurs in the genetic sequence lying between, which is vastly more sequence than the single nucleotide position represented by an SNP. SNPs are typically located within gene coding regions and do not allow consideration of 98% of the 3 billion base pairs of genetic code in the human genome that does not encode gene sequences. Other markers such as STS, gene locus markers and chromosome loci markers also provide very low resolution and incomplete coverage of the genome. Complete and partial sequencing of an individual's genome provides the ability to incorporate that detailed information into the analysis of factors contributing toward expressed attributes.

Genomic influence on traits is now known to involve more than just the DNA nucleotide sequence of the genome. Regulation of expression of the genome can be influenced significantly by epigenetic modification of the genomic DNA and chromatin (3-dimensional genomic DNA with bound proteins). Termed the epigenome, this additional level of information can make genes in an individual's genome behave as if they were absent. Epigenetic modification can dramatically affect the expression of approximately at least 6% of all genes.

Epigenetic modification silences the activity of gene regulatory regions required to permit gene expression. Genes can undergo epigenetic silencing as a result of methylation of cytosines occurring in CpG dinucleotide motifs, and to a lesser extent by deacetylation of chromatin-associated histone proteins which inhibit gene expression by creating 3-dimensional conformational changes in chromatin. Assays such as bisulfite sequencing, differential methyl hybridization using microarrays, methylation sensitive polymerase chain reaction, and mass spectrometry enable the detection of cytosine nucleotide methylation while chromosome immunoprecipitation (CHIP) can be used to detect histone acetylation states of chromatin.

Read more »



Source: http://americankabuki.blogspot.com/2015/02/us-patent-8655899-b2-tying-dna.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.