Online: | |
Visits: | |
Stories: |
![]() |
According to World Health Organisation (WHO), INTERPHONE (a 13-country coordinated case-control study), independent expert group on mobile phones (IEGMP) and scientific committee on emerging and newly-identified health risks (SCENIHR) study researches, it has been found that electromagnetic radiation can contribute to health deficiency, including an increased risk of brain tumours, eye cancer, salivary gland tumours, testicular cancer and leukaemia. Several surveys have found a variety of self-reported symptoms for people who live close to base stations. Collectively, they have not provided evidence of a relationship, but they have had sufficient limitations to leave the question unresolved. International commission on non-ionising radiation protection (ICNIRP) study has concluded that exposure levels due to mobile phone base stations are generally around one-ten-thousandth of the guideline levels. Moreover, WHO has classified mobile phone radiation on the International Agency for Research on Cancer (IARC) scale into Group 2B—possibly carcinogenic to humans. This means that there could be some risk of carcinogenicity, so additional research into the long-term, heavy use of mobile phones/wireless technologies needs to be conducted.
![]() |
Electromagnetic radiation and standards
|
|
Technically, all radiation and fields of the electromagnetic spectrum that do not normally have sufficient energy to produce ionisation in matter, characterised by energy per photon less than about 12 electron volts (eV), wavelengths greater than 100 nanometres (nm) and frequencies lower than 3×1015Hz, is termed as non-ionising radiation. Clearly, radiation that has enough energy to move atoms in a molecule around or cause them to vibrate or pump an electron to a higher energy state, but not enough to remove electrons, is termed as non-ionising radiation.
Extremely-low frequency (ELF) radio waves, microwaves, infra-red, visible light and near ultraviolet are all examples of non-ionising radiation. Here, it is noteworthy that static fields do not radiate and the light from the Sun is also largely composed of non-ionising radiation, with notable exception of some ultraviolet rays.
On the other hand, ionising radiation has enough energy to remove tightly-bound electrons from atoms and thus creating ions. High-frequency ultraviolet rays, X-rays, gamma rays and cosmic rays are examples of ionising radiation and have enough high energy to strip-off electrons or even break-up the nucleus of atoms and thereby releasing huge amount of energy, which may disrupt the chemical bond and ultimately result in ionisation in the human body.
Exposure to very high levels of RF radiation can be harmful due to the ability of RF energy to rapidly heat biological tissues. Adverse effects (tissue damage) in humans could occur during exposure to high-RF levels because of the body’s inability to cope with or dissipate excessive heat that could be generated. The eyes, kneecaps and testes are particularly vulnerable to RF heating because of the relative lack of blood flow in these organs to dissipate excessive heat.
Fig. 3: Radiation field-regions of an antenna
|
Thus, the reference levels for general public and occupational exposure to time-varying electric, magnetic and electromagnetic fields can be easily found for GSM, UMTS, CDMA and WiMAX from Table I. It is noteworthy that these communication systems are strongly time-dependent, so it is required to take average of the measured quantity over a defined period and measurements should be made during time of peak-usage. For example, ICNIRP reference (i.e., field) limits are to be averaged over any six-minute period below 10GHz and over a 68/(1000f)1.05-minute period for frequencies exceeding 10GHz (where f is the frequency in MHz).
In any particular exposure situation, measured or calculated values of any of these quantities can be compared with the appropriate reference level. Compliance with the reference level will ensure compliance with relevant quantities like current density (electric/magnetic field intensity), specific absorption rate (SAR) and power density. If the measured or calculated value exceeds the reference level, it is necessary to test compliance with the relevant field quantity and to determine whether additional protective measures are necessary.
Based on the reference levels set by ICNIRP, compliance distances from base-station antenna have been calculated with the help of equivalent isotropically-radiated power in the direction of maximum antenna gain (eirp, in watts) (Table II). The eirp is the product of the power supplied to the antenna and the maximum antenna gain relative to an isotropic antenna. It should always be assured that for distances greater than the compliance distance, the radiation level is under the limit. Thus, three types of exposure zones have been identified:1. Compliance zone (potential exposure to EMF is below applicable limits)
2. Occupational zone (potential exposure to EMF is below the limits for occupational exposure, but exceeds the limits for general public exposure)
3. Exceedance zone (potential exposure to EMF exceeds the limits for both, occupational and general public exposure)
It should always be ensured that for distances greater than the compliance distance, the radiation level is under the limit. It means that if a lower amount of data concerning a radiating source is available, then the higher overestimation of compliance distances is required.Assessment of exposure levels
The space surrounding an antenna is generally subdivided into four regions: reactive near field, reactive-radiating near field, radiating (Fresnel) near field and radiating far field. Radial distance of the reactive near field is 0.62(D3/λ)1/2, where D is the largest dimension of the antenna and λ is the wavelength (to be valid, D must be large compared to the wavelength). Radial limit of the radiating near field is 2D2/λ. The field region beyond radiating near field (distance ≥ 2D2/λ) is radiating far field, where the field pattern is essentially independent of the distance from the antenna. Thus, assessment of exposure level in any field region for mobile phone frequency bands of interest can be easily done.
Fig. 4: Measurement points for spatial averaging |
Now, in radiating near field, it is suggested to measure only component E with the impedance taken equal to free-space impedance (Z0). In the radiating far-field region, it is possible to measure either the electric or magnetic field component and determine the equivalent power density. However, measurement devices for the electric field component (E) are usually preferred. The equivalent power density within the far-field region is obtained from the measured field by calculation.
Further, multi-path reflections can create non-uniform field distributions. Therefore, to assess the correct exposure level, an averaging process is required and field values should be determined at several points (p) as shown in Fig. 4. Three points are basically recommended (Fig. 4a), but if accuracy is required the number can be increased to six (Fig. 4b), nine (Fig. 4c), 20 (Fig. 4d), etc, for more accurate results. In case of multiple sources, the measurement area should be divided into a grid of about one square metre and measurements should be performed at individual grid points.
The spatially-averaged field value is given by:
|
|
Radiation mitigation techniques
1. Transmitter power reduction.
The transmitter power is directly related to the power density and square of the electric field strength/magnetic field strength. So, reduction in transmitter power would result in reduction of radiation level. But, this method also leads to reduction of the coverage area.2. Increase in antenna height. The power density at any observation point is the function of antenna height. If the antenna height is increased, then the power density/field strength at the observation point is reduced due to an increase in the distance to the point of observation. The reduction of radiation level is even greater because at the same time elevation angles to the considered area are moved to another part of the vertical radiation pattern of the antenna.
3. Decrease in VRP downtilt. The vertical radiation pattern (VRP) of an antenna is very important for performance improvement. All energy radiated above the horizontal plane is lost, and this loss can be managed by reducing the VRP and downtilting the beam. The main beam is tilted downward in order to limit the coverage area, which also increases the possibility of frequency re-use. Moreover, the radiation level also increases in the proximity of antenna. So, it is advised to decrease VRP downtilt in order to reduce the radiation level. The downtilt of the main beam can be achieved by either mechanically or electrically-operated motor mechanism.
4. Increase in antenna gain. Gain of an antenna is a key performance figure that combines the antenna’s directivity and electrical efficiency (G=ηD(θ,φ)). It specifies how well the antenna converts input power into electromagnetic waves headed in a specified direction and to limit the radiation in other directions. So, it is possible to limit the radiation level in the area accessible to the people with the control of the directivity (ultimately gain) of the antenna. Again, the directivity of the antenna is related to horizontal radiation pattern (HRP) and vertical radiation pattern (VRP). In order to protect people against radiation, HRP of the antenna can be altered but it will always affect the coverage area.
Fig. 5: Signage for placement at mobile phone tower site
|
5. Changes in VRP. VRP is a function of elevation angle (i.e., in a vertical plane) and represents the distribution of energy in a vertical plane. It gives an impression of distribution of energy depending on the distance between a transmitting antenna and an observation point. Vertical radiation pattern is responsible for radiation to the area in the proximity of the antenna. So, changes can be done in VRP by introducing changes in the feeding arrangement (changing cable length). So, an optimisation of VRP will result in reduction in radiation level.
6. Changes in HRP. HRP is a function of azimuth angle, representing distribution of energy in a horizontal plane. It is possible to reduce the radiation level by using an antenna with a narrower horizontal beam. A narrower horizontal beam (means higher antenna gain) accompanied with lower transmitter power will result in lower radiation level without the loss of coverage area.
7. Multiple methods applied simultaneously. All methods described above are independent and can be applied either individually or in combination to achieve the required decrease in radiation level.Conclusion
In order to minimize possible health hazards, some recommendations are: minimization of mobile phone usage, limitation of use by at-risk population (such as children), adoption of mobile phones and microcells with as low as reasonably-practicable levels of radiation, wider use of hands-free and earphone technologies such as Bluetooth headsets, headsets with ferrite beads and headsets with air tube, adoption of maximal standards of exposure and greater distances of base-station antennae from human habitations, and so forth.
NESARA- Restore America – Galactic News