Online:
Visits:
Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Scientists have successfully coaxed old brain processes to become young again

Tuesday, May 19, 2015 15:11
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Image result for Scientists have successfully coaxed old brain processes to become young again

Scientists, led by an Indian-origin researcher, have successfully coaxed old brain processes to become young again, paving the way for new treatments for brain disorders such as autism and schizophrenia.

University of California-Irvine neurobiologist Sunil Gandhi and colleagues re-created a critical juvenile period in the brains of adult mice, reactivating brain plasticity — the rapid and robust changes in neural pathways and synapses as a result of learning and experience. They achieved this by transplanting a certain type of embryonic neuron into the brains of adult mice.

Transplanted neurons express GABA, a chief inhibitory neurotransmitter that aids in motor control, vision and many other cortical functions.

Much like older muscles lose their youthful flexibility, older brains lose plasticity. But in the study, the transplanted GABA neurons created a new period of heightened plasticity that allowed for vigorous rewiring of the adult brain. In a sense, old brain processes became young again.

In early life, normal visual experience is crucial to properly wire connections in the visual system. Impaired vision during this time leads to a long-lasting visual deficit called amblyopia.

In an attempt to restore normal sight, the researchers transplanted GABA neurons into the visual cortex of adult amblyopic mice.

“Several weeks after transplantation, when the donor animal's visual system would be going through its critical period, the amblyopic mice started to see with normal visual acuity,” said Melissa Davis, a postdoctoral fellow and lead author of the study.

These results raise hopes that GABA neuron transplantation might have future clinical applications. This line of research is also likely to shed light on the basic brain mechanisms that create critical periods.

“These experiments make clear that developmental mechanisms located within these GABA cells control the timing of the critical period,” said Gandhi, an assistant professor of neurobiology & behaviour.

The study was published in the journal Neuron

Credit to The Tribune





http://nunezreport.blogspot.com/



Source: http://nunezreport.blogspot.com/2015/05/scientists-have-successfully-coaxed-old.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.