Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Follow TIS on Twitter: @Truth_is_Scary & Like TIS of Facebook- facebook.com/TruthisScary
A potentially destructive high-energy storm of electrons are currently bombarding the Earth’s atmosphere causing damage to the Ozone and satellites, scientists have discovered.
The electrons, travelling at the speed of light, have the potential to damage satellites that provide navigation, communication, weather, and military information.
Phys.org reports:
These satellites fly through the Van Allen radiation belts—giant concentric layers of charged particles held in place by the Earth’s magnetic field. An increase in particle density and charge brought about by solar activity can raise the level of threat to our critical satellites.
Dartmouth physicist Robyn Millan and a team of scientists have engaged in a unique study of this electronic bombardment, for the first time employing two distinctly different and distant vantage points high above the Earth.
“This is exciting for us because we are integrating data collected by our instruments with the data from NASA’s Van Allen Probes,” says Millan, an associate professor of physics and astronomy. “These are the most direct measurements that have ever been made that link what’s going on at the equator to what’s coming into the atmosphere in the southern polar region. We are measuring particles that are getting scattered into Earth’s atmosphere at the same time as the spacecraft are measuring what’s going on in space.”
Millan uses instruments carried aloft by balloons launched from Antarctica, rising as high as 125,000 feet. Supported by NASA, the project is called BARREL, an acronym for Balloon Array for Radiation belt Relativistic Electron Losses. The instruments record the X-rays produced as the falling electrons collide with the atmosphere.
“Earth’s magnetic field looks like that of a bar magnet,” Millan says. “If you follow from the equatorial plane down to the poles, particles move along those magnetic field lines. That’s why we see the aurora in the northern and southern hemispheres.”