Online:
Visits:
Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Milky Way’s youngest supernova being explored

Sunday, April 3, 2016 21:56
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Scientists have used data from NASA’s Chandra X-ray Observatory and the National Science Foundation’s Jansky Very Large Array to determine the likely trigger for the most recent supernova in the Milky Way. They applied a new technique that could have implications for understanding other type Ia supernovae, a class of stellar explosions that scientists use to determine the expansion rate of the universe.

Astronomers had previously identified G1.9+0.3 as the remnant of the most recent supernova in our galaxy. It is estimated to have occurred about 110 years ago in a dusty region of the galaxy that blocked visible light from reaching Earth.

G1.9+0.3 belongs to the type Ia category, an important class of supernovae exhibiting reliable patterns in their brightness that make them valuable tools for measuring the rate at which the universe is expanding.

“Astronomers use type Ia supernovae as distance markers across the universe, which helped us discover that its expansion was accelerating,” said Sayan Chakraborti, who led the study at Harvard University. “If there are any differences in how these supernovae explode and the amount of light they produce, that could have an impact on our understanding of this expansion.”

Most scientists agree that type Ia supernovae occur when white dwarfs, the dense remnants of Sun-like stars that have run out of fuel, explode. However, there has been a debate over what triggers these white dwarf explosions. Two primary ideas are the accumulation of material onto a white dwarf from a companion star or the violent merger of two white dwarfs.

The new research with archival Chandra and VLA data examines how the expanding supernova remnant G1.0+0.3 interacts with the gas and dust surrounding the explosion. The resulting radio and X-ray emission provide clues as to the cause of the explosion. In particular, an increase in X-ray and radio brightness of the supernova remnant with time, according to theoretical work by Chakraborti’s team, is expected only if a white dwarf merger took place.

“We observed that the X-ray and radio brightness increased with time, so the data point strongly to a collision between two white dwarfs as being the trigger for the supernova explosion in G1.9+0.3,” said Francesca Childs, also of Harvard.

The result implies that type Ia supernovae are either all caused by white dwarf collisions, or are caused by a mixture of white dwarf collisions and the mechanism where the white dwarf pulls material from a companion star.

“It is important to identify the trigger mechanism for type Ia supernovae because if there is more than one cause, then the contribution from each may change over time,” said Harvard’s Alicia Soderberg. This means astronomers might have to recalibrate some of the ways we use them as ‘standard candles’ in cosmology.”

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.