Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

First All-Carbon Solar Cell, Low Cost And Abundant Material

Friday, November 2, 2012 19:31
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

Researchers have developed a solar cell made entirely of carbon, an inexpensive substitute for the pricey materials used in conventional solar panels.

Stanford University scientists have built the first solar cell made entirely of carbon, a promising alternative to the expensive materials used in photovoltaic devices today. The results are published in the Oct. 31 online edition of the journal ACS Nano.


“Carbon has the potential to deliver high performance at a low cost,” said study senior author Zhenan Bao, a professor of chemical engineering at Stanford. “To the best of our knowledge, this is the first demonstration of a working solar cell that has all of the components made of carbon. This study builds on previous work done in our lab.”

The Bao group’s all-carbon solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. Photo: Mark Shwartz | Stanford University

Unlike rigid silicon solar panels that adorn many rooftops, Stanford’s thin film prototype is made of carbon materials that can be coated from solution. “Perhaps in the future we can look at alternative markets where flexible carbon solar cells are coated on the surface of buildings, on windows or on cars to generate electricity,” Bao said.

The coating technique also has the potential to reduce manufacturing costs, said Stanford graduate student Michael Vosgueritchian, co-lead author of the study with postdoctoral researcher Marc Ramuz.

“Processing silicon-based solar cells requires a lot of steps,” Vosgueritchian explained. “But our entire device can be built using simple coating methods that don’t require expensive tools and machines.”


CARBON NANOMATERIALS

The Bao group’s experimental solar cell consists of a photoactive layer, which absorbs sunlight, sandwiched between two electrodes. In a typical thin film solar cell, the electrodes are made of conductive metals and indium tin oxide (ITO). “Materials like indium are scarce and becoming more expensive as the demand for solar cells, touchscreen panels and other electronic devices grows,” Bao said. “Carbon, on the other hand, is low cost and Earth-abundant.”

For the study, Bao and her colleagues replaced the silver and ITO used in conventional electrodes with graphene – sheets of carbon that are one atom thick –and single-walled carbon nanotubes that are 10,000 times narrower than a human hair. “Carbon nanotubes have extraordinary electrical conductivity and light-absorption properties,” Bao said.

For the active layer, the scientists used material made of carbon nanotubes and “buckyballs” – soccer ball-shaped carbon molecules just one nanometer in diameter. The research team recently filed a patent for the entire device.

“Every component in our solar cell, from top to bottom, is made of carbon materials,” Vosgueritchian said. “Other groups have reported making all-carbon solar cells, but they were referring to just the active layer in the middle, not the electrodes.”


Stanford Professor Zhenan Bao and her colleagues have developed the first solar cell made entirely of carbon, a promising alternative to the expensive materials used in photovoltaic devices today. Unlike rigid silicon solar panels that adorn many rooftops, Stanford’s thin film prototype is made of carbon materials that can be coated from solution – a technique that has the potential to reduce manufacturing costs.

One drawback of the all-carbon prototype is that it primarily absorbs near-infrared wavelengths of light, contributing to a laboratory efficiency of less than 1 percent – much lower than commercially available solar cells. “We clearly have a long way to go on efficiency,” Bao said. “But with better materials and better processing techniques, we expect that the efficiency will go up quite dramatically.”


IMPROVING EFFICIENCY

The Stanford team is looking at a variety of ways to improve efficiency. “Roughness can short-circuit the device and make it hard to collect the current,” Bao said. “We have to figure out how to make each layer very smooth by stacking the nanomaterials really well.”

The researchers are also experimenting with carbon nanomaterials that can absorb more light in a broader range of wavelengths, including the visible spectrum.

“Materials made of carbon are very robust,” Bao said. “They remain stable in air temperatures of nearly 1,100 degrees Fahrenheit.”

The ability of carbon solar cells to out-perform conventional devices under extreme conditions could overcome the need for greater efficiency, according to Vosgueritchian. “We believe that all-carbon solar cells could be used in extreme environments, such as at high temperatures or at high physical stress,” he said. “But obviously we want the highest efficiency possible and are working on ways to improve our device.”

“Photovoltaics will definitely be a very important source of power that we will tap into in the future,” Bao said. “We have a lot of available sunlight. We’ve got to figure out some way to use this natural resource that is given to us.”

Other authors of the study are Peng Wei of Stanford and Chenggong Wang and Yongli Gao of theUniversity of Rochester Department of Physics and Astronomy. The research was funded by the Global Climate and Energy Project at Stanford and theAir Force Office for Scientific Research.

Contacts and sources:
By Mark Shwartz

Stanford News Service

 

 

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.