Visitors Now:
Total Visits:
Total Stories:
Profile image
By Anonymous (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Improving the Efficiency at the Heart of the Wind Farm

Wednesday, September 5, 2012 9:03
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 
A wind farm is subject to many influences, but maybe it’s biggest challenge is itself. When the wind hits that first turbine, all is well, but the wind coming out the other side of said turbine is a mess of whorls, large and small, which flow on to the next turbine in the row and the next and…. In fact, the turbines in the subsequent rows deliver up to 40 percent less power than those in the first.

Two recently published articles in the journal Boundary-Layer Meteorology look at the problems wind farms cause for themselves, and how it could be possible to rectify the issues.

Study #1, Trying a New Layout

The first study was co-written by Yu-Ting Wu, a PhD student at EPFL’s Wind Engineering and Renewable Energy Laboratory (WIRE), and Fernando Porté-Agel, also at WIRE.

“One important factor for designing a wind farm is its layout, or how the turbines are positioned relative to each other,” says Yu-Ting Wu.

Wu compared the results from a numerical simulation of the wind through a wind farm to wind tunnel experiments, focusing specifically on where the wind turbines were placed within the wind farm. He found that simply changing the wind farm from a square grid can increase the total efficiency of the wind farm, giving the wind more time to recover after it has passed through the first wind turbine.

Finding the perfect setup, however, is a lot of trouble.

“You have to remember that layout is relative, and changes with the wind direction,” says Wu.

If the wind is blowing from the south, two turbines may be one behind the other. If it comes in from the east, they’re all of a sudden right beside one another.
 

 

Study #2, Warmer is Better

The second article, involving Porté-Agel and colleagues from the University of Minnesota, looked at the role atmospheric stability plays on a wind farm’s power output. For their experiments, the researchers turned on the floor heating in their wind tunnel to study the effects of convection on the wake behind a turbine.

They found that despite the increased turbulence that occurs on hot days, the flow behind the wind turbine actually recovers faster than in less turbulent nocturnal winds.

This means that on hot days the second row of turbines would not lose as much efficiency as they might during the night. According to the authors, the stronger turbulence surrounding the turbine wake draws in more forward momentum, which leads to faster recovery of the flow.

Source: Ecole Polytechnique Federale de Lausanne
Image Source: Brooke Raymond




Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.