Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Most people know what anthropogenic global warming is. Even climate deniers have some idea of how it works, though they may pretend it’s not happening. The technical details of anthropogenic global warming are as follows:
There’s obviously a lot more to it than that, but this is the basic science behind it.
A lot of people are operating under the mistaken assumption that moving the human production of CO2 to zero will fix the problem, but this is not necessarily true, for several reasons.
For earth to remain habitable, and for us to continue to enjoy our lifestyle, we must be removing carbon from the atmosphere, not simply reducing the amount we add. Unfortunately, there are not many known ways to reliably do this. One way that is known, however, is pyrolysis.
Pyrolysis is the exposure of organic material to heat in an anaerobic environment. Without oxygen, high-energy hydrogen compounds break off the organic material and leave relatively inert carbon behind. This resulting material is known as biochar, and is reputed to be wonderful fertiliser, as well as a sink for carbon that would otherwise escape back into the atmosphere.
More information on biochar here.
Another thing that heat can be used for is energy storage. Renewable sources of energy face a huge hurdle in replacing chemical fossil energy because they are not available on demand. One of the ways engineers have gotten around this is to store energy from the sun in the form of molten salt. These solar thermal designs have proven their ability to provide 100% renewable baseload power.
Check out the Gemasolar 24-hour solar plant.
If we were to combine thermal storage of renewable energy with pyrolysis of sewage, garbage, and agricultural waste, it would have the following effects:
The configuration of heat storage, pyrolysis, and manufacturing could be done in any number of ways:
One might take the industrial heat from smelting or raw materials production and store it to create electricity later. One might produce biogas directly from electricity and export it or store it to generate power when needed. One might immediately oxidize the biogas created to generate a two-phase, ultra-efficient electrical generation system in the manner of combined cycle natural gas power plants.
If society were to do any of this, it would be a win-win-win-win-win-win-win-win scenario.
Images: Halotechnics Energy Storage, Terra Preta Wikipedia
2012-11-13 22:20:30
Source: http://cleantechnica.com/2012/11/13/how-to-reverse-global-warming-with-heat/