Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
An article published in Nature last year highlights a scientific breakthrough – the isolation of a gene that enhances root growth thereby enabling rice to take up significantly more phosphorus, a critical nutrient for plant growth. That way, plants can obtain a large portion of their phosphorus requirement directly from the soil – a great boon for farmers who have to grow rice on problem soils with low phosphorus availability and cannot afford sufficient fertiliser.
Scientists have now isolated the gene that increases the uptake of phosphorus in rice, thereby increasing production. Dubbed PSTOL1, this gene makes the plant to grow more roots faster, thereby enabling it to absorb more phosphorus.
Globally, more than half of all cropland is low in plant-available phosphorus, posing a serious problem for poor, remote, rice-farming communities that must manage without fertilisers. Many such communities depend on upland rice. And while upland soils may have phosphorus, the problem is that this critical nutrient is locked in forms that are not readily available to rice plants, especially in acid soils.
Truly friendly fire: A ‘pistol shot’ from PSTOL1 goes a long way…
“In field tests in Japan, Indonesia and the Philippines, rice with the PSTOL1 gene produced about 20 percent more grain on average than rice without the gene,” reveals Dr Sigrid Heuer, the project’s Principal Investigator, and a molecular biologist at the International Rice Research Institute (IRRI).
The IRRI-led project that isolated the gene is part of the research portfolio of the CGIAR Generation Challenge Programme (GCP) and is an inter-institutional collaboration whose key partners are IRRI, the Japan International Research Center for Agricultural Sciences (JIRCAS) and the Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development (ICABIOGRAD). GCP’s mission is to use genetic diversity and advanced plant science to improve crops by adding value to breeding for drought-prone and harsh environments. This is achieved through the generosity of several funders and a network of more than 200 partners drawn from CGIAR Centres and Programmes, academia, regional and national research programmes, and capacity enhancement to assist developing-world researchers to access technologies and to tap into a broader and richer pool of plant genetic diversity. GCP is funded multilaterally.
Gambling sometimes pays
“We have now hit the jackpot and found PSTOL1 – the major gene responsible for improved phosphorus uptake – and understand how it works,” says Dr Heuer. PSTOL stands for stands for phosphorus starvation tolerance, and is one of 68 initially predicted putative genes in the locus that project scientists had tagged as Pup1 – short for ‘phosphorus uptake 1’.
2013-02-16 05:53:05
Source: http://gmopundit.blogspot.com/2013/02/rooting-and-shooting-for-rice-getting.html