Profile image
By GMO Pundit (Reporter)
Contributor profile | More stories
Story Views

Last Hour:
Last 24 Hours:

Sustainable solar-to-fuels and solar-to-fertilizer production

Wednesday, April 5, 2017 17:09
% of readers think this story is Fact. Add your two cents.

(Before It's News)


538 – Sustainable solar-to-fuels and solar-to-fertilizer production

Daniel Nocera, [email protected]

Harvard University, Cambridge, Massachusetts, United States


Hybrid inorganic | biological constructs have been created to use sunlight, air and water to accomplish carbon fixation and nitrogen fixation thus enabling distributed and renewable fuels and fertilizer generation. The carbon fixation cycle is achieved by interfacing the oxygen evolving and hydrogen evolving catalysts of the artificial leaf with an engineered bioorganism. Using the tools of synthetic biology, a bio-engineered bacterium has been developed to convert carbon dioxide, along with the hydrogen produced from the artificial leaf, into biomass and liquid fuels, thus closing an entire artificial photosynthetic cycle. This hybrid microbial | artificial leaf system scrubs 180 grams of CO2 from air, equivalent to 230,000 liters of air per 1 kWh of electricity. This hybrid device, called the bionic leaf, operates at unprecedented solar-to-biomass (10.7%) and solar-to-liquid fuels (6.2%) yields, greatly exceeding the 1% yield of natural photosynthesis. Extending our approach, we have discovered a renewable and distributed synthesis of ammonia at ambient conditions by coupling solar-based water splitting to a nitrogen fixing bioorganism in a single reactor. Nitrogen is fixed to ammonia by using the hydrogen from the artificial leaf to power a nitrogenase installed in the bioorganism. The ammonia produced by the nitrogenase can be diverted from biomass formation to an extracellular product with the addition of an inhibitor. The nitrogen reduction reaction proceeds at a low driving force (~ 0.16 V) with a turnover number (TON) of 8 × 10^9 per cell and operates at 15 to 23% of the theoretical yield without the use of any sacrificial chemical reagents and carbon feedstock (which is provided by CO2 from air). This approach can be powered by distributed renewable electricity, enabling the sustainable production of nitrogen fertilizer.

EventPilot Web: via Robert F Service here

Mark as important, even without published details


Report abuse


Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories



Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.