Visitors Now:
Total Visits:
Total Stories:
Profile image
By Next Big Future (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

IBM Supercomputer in Germany Points the way to Water Cooled 3D chips for Desktop Supercomputers

Monday, June 18, 2012 20:23
% of readers think this story is Fact. Add your two cents.

(Before It's News)

From NextBigFuture.com

IBM is developing energy-efficient run-time thermal control strategies to achieve energy-efficient cooling mechanisms to compress almost 1 Tera nano-sized functional units into one cubic centimeter with a 10 to 100 fold higher connectivity than otherwise possible. This will hopefully enable compact mobile supercomputers with the power of todays room sized systems in a desktop package in the 2017-2025 timeframe.

"The long-term vision of a zero emission data center we may eventually achieve a million fold reduction in the size of SuperMUC, so that it can be reduced to the size of a desktop computer with a much higher efficiency than today," said Dr. Bruno Michel, manager, Advanced Thermal Packaging, IBM Research.

SuperMUC combines its hot-water cooling capability, which removes heat 4,000 times more efficiently than air, with 18,000 energy-efficient Intel Xeon processors. In addition to helping with scientific discovery, the integration of hot-water cooling and IBM application-oriented, dynamic systems management software, allows energy to be captured and reused to heat the buildings during the Winter on the sprawling Leibniz Supercomputing Centre Campus, for savings of one million Euros ($1.25 million USD) per year.

There are flickr photos of the IBM SuperMUC

B4INREMOTE-aHR0cDovLzIuYnAuYmxvZ3Nwb3QuY29tLy1ZYWhGYWcydmRsOC9UOS1LRC16Q0czSS9BQUFBQUFBQVZvWS9HdDZMQUNITWMtWS9zNjQwL2libWZ1dHVyZWNvb2xpbmcucG5n

DARPA

A new DARPA program seeks to cool chips, chip stacks from within

The continued miniaturization and the increased density of components in today’s electronics have pushed heat generation and power dissipation to unprecedented levels. Current thermal management solutions, usually involving remote cooling, are unable to limit the temperature rise of today’s complex electronic components. Such remote cooling solutions, where heat must be conducted away from components before rejection to the air, add considerable weight and volume to electronic systems. The result is complex military systems that continue to grow in size and weight due to the inefficiencies of existing thermal management hardware.

Recent advances of the DARPA Thermal Management Technologies (TMT) program enable a paradigm shift—better thermal management. DARPA’s Intrachip/Interchip Enhanced Cooling (ICECool) program seeks to crack the thermal management barrier and overcome the limitations of remote cooling. ICECool will explore ‘embedded’ thermal management by bringing microfluidic cooling inside the substrate, chip or package by including thermal management in the earliest stages of electronics design.

Read more »





See more and subscribe to NextBigFuture at NextBigFuture.com

Read more at Next Big Future



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.