Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Galaxy Candidate MACS1149-JD Closeup
Credit: NASA, ESA, W. Zheng (JHU), M. Postman (STScI), and the CLASH Team
The natural luminosity enhancer that helped researchers discover the galaxy consists of dark matter, so called because it can only be perceived indirectly, e.g. by its light-attracting properties. Galaxy clusters in which hundreds or thousands of galaxies move in a relatively small space contain large amounts of dark matter. If such a galaxy cluster with its dark matter is located at a certain distance from Earth, it acts like a magnifying lens – it makes objects located behind it appear larger and brighter by bundling their light. It is this effect of the gravitational lens that led to the discovery of MACS1149-JD1.
Galaxy Cluster MACS J1149+2223
“Galaxies going through an intensive phase of star formation show a certain distinctive and characteristic gradation in their spectral energy distribution. We can detect this gradation by observing a galaxy through a telescope with different filters“, states Dr. Adi Zitrin, who is part of Prof. Bartelmann’s work group. However, the gradation shifts in just as characteristic a manner depending on how far away the galaxy is. In the case of MACS1149-JD1 this shift, known as redshift, has a value of 9.6. According to the Heidelberg scientists, this puts the galaxy at a distance which light has covered within 13.2 billion years.
Essential clues that led to the discovery of MACS1149-JD1 were provided by a method of analysis also developed at the ZAH. This method has scientists measuring the distortion of the telescope images of galaxies located far behind the galaxy clusters, a distortion that is caused by the large amount of invisible dark matter in the clusters. In the case of MACS1149+22, the researchers detected a total of seven background galaxies whose image was enhanced, distorted and split into 23 multiple images by the gravitational effect of the galaxy cluster. This enabled the team to predict the location of a light-enhanced galaxy at a redshift of 9.6. The scientists concluded that the galaxy must have formed as early as 490 million years after the Big Bang.
At the heart of this research are images provided by the Hubble space telescope that has been closely observing certain galaxy clusters since 2010. Headed by Prof. Dr. Wei Zheng from Johns Hopkins University in Baltimore, USA, the project counts research teams from Chile, China, Denmark, Germany, Italy, the Netherlands, Spain, Taiwan, the UK and the U.S. among its contributors. In Germany, this project is supported by the Baden-Württemberg Stiftung.
Citation: W. Zheng, M. Postman, A. Zitrin, J. Moustakas, X. Shu, S. Jouvel, O. Host, A. Molino, L. Bradley, D. Coe, L. A. Moustakas, M. Carrasco, H. Ford, N. Benitez, T. R. Lauer, S. Seitz, R. Bouwens, A. Koekemoer, E. Medezinski, M. Bartelmann, T. Broadhurst, M. Donahue, C. Grillo, L. Infante, S. W. Jha, D. D. Kelson, O. Lahav, D. Lemze, P. Melchior, M. Meneghetti, J. Merten, M. Nonino, S. Ogaz, P. Rosati, K. Umetsu, A. van der Wel: A highly magnified candidate for a young galaxy seen when the Universe was about 500 Myr old, Nature (20 September 2012), doi10.1038/nature11446
2012-09-20 12:50:12
Source: http://nanopatentsandinnovations.blogspot.com/2012/09/dark-matter-aids-in-finding-nursery-of.html