Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Powerful New Explosive Could Replace Today’s State-Of-The-Art Military Explosive

Wednesday, September 5, 2012 9:01
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Borrowing a technology used to improve the effectiveness of drugs, scientists are reporting discovery of a new explosive more powerful than the current state-of-the-art explosive used by the military, and just as safe for personnel to handle. Their report appears in ACS’ journal Crystal Growth & Design.

Adam J. Matzger and colleagues explain that a technique for engineering medicines and other materials, termed cocrystallization, is attracting attention as a way to make improved explosives, rocket propellants and fireworks. Most solid materials consist of crystals — with atoms and molecules arranged in a specific pattern that repeats itself time and again. Cocrystallization involves combining two materials into a new crystal architecture with the goal of producing an improved material.

They describe cocrystallization of the military’s standard explosive, HMX, with a powerful explosive called CL-20, which the authors say is too prone to accidental detonation for military use. Mixing two parts CL-20 with one part HMX, however, produced a new explosive with a blast wave that would travel almost 225 miles per hour faster than that of the purest form of HMX, meaning a much more powerful blast. The new explosive, however, was as stable and resistant to accidental detonation as HMX. They suggest that it has the potential to replace HMX as the new state-of-the art military 

explosive. 

HMX, also called octogen, is a powerful and relatively insensitive nitroamine high explosive, chemically related to RDX. Like RDX, the compound’s name is the subject of much speculation, having been variously listed as High Melting eXplosive, Her Majesty’s eXplosive, High-velocity Military eXplosive, or High-Molecular-weight rdX.

HMX molecule

 

Credit: Wikipedia

The molecular structure of HMX consists of an eight-membered ring of alternating carbon and nitrogen atoms, with a nitro group attached to each nitrogen atom. Because of its high molecular weight, it is one of the most potent chemical explosives manufactured, although a number of newer ones, including HNIW and ONC, are more powerful.

Also known as cyclotetramethylene-tetranitramine, tetrahexamine tetranitramine, or octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, HMX was first made in 1930. In 1949 it was discovered that HMX can be prepared by nitrolysis of RDX. Nitrolysis of RDX is performed by dissolving RDX in a 55% HNO3 solution, followed by placing the solution on a steambath for about six hours. HMX is used almost exclusively in military applications, including as the detonator in nuclear weapons, in the form of polymer-bonded explosive, and as a solid rocket propellant.

During World War II, under the code name Aunt Jemima, HMX was mixed with flour and used by Chinese guerrillas to disrupt the Japanese invasion and occupation of China. The mixture could easily pass for regular flour, thereby passing checkpoints without detection. It could even be cooked into pancakes without exploding and eaten without poisoning anyone. Uneaten pancakes or unused dough could still be used later for its original explosive purposes. In China during WWII, 15 tons of the “Aunt Jemima” HMX mixture was used. None was ever “discovered” by the Japanese.

HMX is used in melt-castable explosives when mixed with TNT, which as a class are referred to as “octols”. Additionally, polymer-bonded explosive compositions containing HMX are used in the manufacture of missile warheads and armor-piercing shaped charges.

HMX is also used in the process of perforating the steel casing in oil and gas wells. The HMX is built into a shaped charge that is detonated within the wellbore to punch a hole through the steel casing and surrounding cement out into the hydrocarbon bearing formations. The pathway that is created allows formation fluids to flow into the wellbore and onward to the surface.

The authors acknowledge support from the Defense Threat Reduction Agency.

Contacts and sources:
Michael Bernstein
American Chemical Society




Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.