Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Nano-Machines Mimic Human Muscle

Tuesday, October 23, 2012 13:22
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

For the first time, an assembly of thousands of nano-machines capable of producing a coordinated contraction movement extending up to around ten micrometers, like the movements of muscular fibers, has been synthesized by a CNRS team from the Institut Charles Sadron. 

This innovative work, headed by Nicolas Giuseppone, professor at the Université de Strasbourg, and involving researchers from the Laboratoire de Matière et Systèmes Complexes (CNRS/Université Paris Diderot), provides an experimental validation of a biomimetic approach that has been conceptualized for some years in the field of nanosciences. 
 
Left and right: Principle of contraction and expansion of a polymer chain based on telescopic supramolecular association of thousands of nano-machines. Centre: Molecular model of three nano-machines linked together within the polymer chain.

© Wiley-VCH Verlag GmbH & Co.KGaA. Reproduced with permission. This image is available from the CNRS photo library, [email protected]

This discovery opens up perspectives for a multitude of applications in robotics, in nanotechnology for the storage of information, in the medical field for the synthesis of artificial muscles or in the design of other materials incorporating nano-machines (endowed with novel mechanical properties). This work has been published in the on-line version of the journal Angewandte Chemie International Edition.

Nature manufactures numerous machines known as “molecular”. Highly complex assemblies of proteins, they are involved in essential functions of living beings such as the transport of ions, the synthesis of ATP (the “energy molecule”), and cell division. Our muscles are thus controlled by the coordinated movement of these thousands of protein nano-machines, which only function individually over distances of the order of a nanometer. 

 
However, when combined in their thousands, such nano-machines amplify this telescopic movement until they reach our scale and do so in a perfectly coordinated manner. Even though synthetic chemists have made dazzling progress over the last few years in the manufacture of artificial nano-machines (the mechanical properties of which are of increasing interest for research and industry), the coordination of several of these machines in space and in time hitherto remained an unresolved problem. 

Not anymore: for the first time, Giuseppone’s team has succeeded in synthesizing long polymer chains incorporating, via supramolecular bonds (1), thousands of nano-machines each capable of producing linear telescopic motion of around one nanometer. Under the influence of pH, their simultaneous movements allow the whole polymer chain to contract or extend over about 10 micrometers, thereby amplifying the movement by a factor of 10,000, along the same principles as those used by muscular tissues. 

 
Precise measurements of this experimental feat have been performed in collaboration with the team led by Eric Buhler, a physicist specialized in radiation scattering at the Laboratoire Matière et Systèmes Complexes (CNRS/Université Paris Diderot). 

These results, obtained using a biomimetic approach, could lead to numerous applications for the design of artificial muscles, micro-robots or the development of new materials incorporating nano-machines endowed with novel multi-scale mechanical properties. 

(1) A supramolecular bond is an interaction between different molecules that is not based on a traditional “covalent” chemical bond but instead on what are known as “weak interactions”, thereby constituting complex molecular structures.

Citation: Muscle-like Supramolecular Polymers – Integrated Motion from Thousands of Molecular Machines, G. Du, E. Moulin, N. Jouault, E. Buhler, N. Giuseppone, Angew. Chem. Int. Ed. On line on the 18/10/2012 (DOI: 10.1002/ange.201206571).

Contacts and sources:
CNRS (Délégation Paris Michel-Ange) 

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.