Visitors Now:
Total Visits:
Total Stories:
Profile image
By Next Big Future (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Nanometer-scale diamond tips improve nano-manufacturing

Thursday, November 15, 2012 2:53
% of readers think this story is Fact. Add your two cents.

(Before It's News)

From NextBigFuture.com

One of the most promising innovations of nanotechnology has been the ability to perform rapid nanofabrication using nanometer-scale tips. The fabrication speed can be dramatically increased by using heat. High speed and high temperature have been known to degrade the tip… until now.

“Thermal processing is widely used in manufacturing,” according to William King, the College of Engineering Bliss Professor at Illinois. “We have been working to shrink thermal processing to the nanometer scale, where we can use a nanometer-scale heat source to add or remove material, or induce a physical or chemical reaction.”

One of the key challenges has been the reliability of the nanometer-scale tips, especially with performing nano-writing on hard, semiconductor surfaces. Now, researchers at the University of Illinois, University of Pennsylvania, and Advanced Diamond Technologies Inc., have created a new type of nano-tip for thermal processing, which is made entirely out of diamond.

“The end of the diamond tip is 10 nm in size,” King explained. “Not only can the tip be used for nanometer-scale thermal processing, but it is extremely resistant to wear.”

The research findings are reported in the article, “Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope (AFM) cantilever,” that appears in in the journal Nanotechnology. The study shows how the 10 nm diamond tip scans in contact with a surface for a distance of more than 1.2 meters, and experiences essentially no wear over that distance.

B4INREMOTE-aHR0cDovLzMuYnAuYmxvZ3Nwb3QuY29tLy1jMUVCSEpfaGUtTS9VS1EtdEtjVnFCSS9BQUFBQUFBQWZBMC9ueDZRMVFLYVpKQS9zMzIwL2RpYW1vbmR0aXAucG5n

Diamond nano-tip integrated onto the micro-heater of a doped silicon microcantilever. The tip has a radius of 10 nm.

Ultrananocrystalline diamond tip integrated onto a heated atomic force microscope cantilever

Read more »


See more and subscribe to NextBigFuture at NextBigFuture.com



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.