Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Gusty Space Winds Confirmed, Turbulence Helps Heat Solar Surface To 1 Million Degrees

Monday, December 17, 2012 23:40
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Imagine riding in an airplane as the plane is jolted back and forth by gusts of wind that you can’t prove exist but are there nonetheless.

Similar turbulence exists in space, and a research team led by the University of Iowa reports to have directly measured it for the first time in the laboratory.

“Turbulence is not restricted to environments here on Earth, but also arises pervasively throughout the solar system and beyond, driving chaotic motions in the ionized gas, or plasma, that fills the universe,” says Gregory Howes, assistant professor of physics and astronomy at the UI and lead author of the paper to be published Dec. 17 in the online edition of Physical Review Letters, the journal of the American Physical Society. “It is thought to play a key role in heating the atmosphere of the sun, the solar corona, to temperatures of a million degrees Celsius, nearly a thousand times hotter than the surface of the sun.”


A solar prominence erupts into the sun’s atmosphere, or corona.

Credit: NASA

He adds: “Turbulence also regulates the formation of the stars throughout the galaxy, determines the radiation emitted from the super massive black hole at the center of our galaxy and mediates the effects that space weather has on the Earth.“

One well-known source of gusty space winds are the violent emissions of charged particles from the sun, known as coronal mass ejections. These solar-powered winds can adversely affect satellite communications, air travel and the electric power grid. On the positive side, solar storms also can also lead to mesmerizing auroras at the north and south poles on Earth.

Howes notes that unlike gusts of wind on the surface of the Earth, turbulent motions in space and astrophysical systems are governed by Alfven waves, which are traveling disturbances of the plasma and magnetic field. Nonlinear interactions between Alfven waves traveling up and down the magnetic field—such as two magnetic waves colliding to create a third wave—are a fundamental building block of plasma turbulence, and modern theories of astrophysical turbulence are based on this underlying concept, he says.


Researchers at the University of Iowa and UCLA have measured space turbulence for the first time in a laboratory. The animation shows these bursts of turbulence, with the brighter colors (yellow, red) indicating increased turbulence. 

Credit: James Schoeder and Basic Plasma Science Facility, UCLA.

“We have presented the first experimental measurement in a laboratory plasma of the nonlinear interaction between counter-propagating Alfven waves, the fundamental building block of astrophysical turbulence,” Howes says.

Contributing authors on the paper are D.J. Drake, K.D. Nielson, Craig Kletzing, and Fred Skiff, all of the University of Iowa, and T.A. Carter of the University of California, Los Angeles. The research, conducted at the Large Plasma Device at UCLA, was funded by a grant from the NSF/DOE Partnership in Basic Plasma Science and Engineering.

Preprints of the abstract and paper, “Toward Astrophysical Turbulence in the Laboratory,” (PDF download) are available at: http://lanl.arxiv.org/abs/1210.4568

Howes is a 2010 Presidential Early Career Awards for Scientists and Engineers recipient. In 2011, he won a five-year Faculty Early Career Development Award from the NSF to study the near-Earth solar wind.

Contacts and sources:
Gary Galuzzo, University Communication
Gregory Howes, Physics and Astronomy
University of Iowa



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.