Visitors Now:
Total Visits:
Total Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Makarieva et al finally get their groundbreaking paper on Atmospheric Thermodynamics published

Saturday, January 26, 2013 3:20
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Discussion of this paper got quite heated on Lucia Liljegren’s blog a year or so ago. Now it has been published in a high impact journal. Hopefully Lucia might stop by to explain her objections, and tell us what if anything has changed in this final version. This is potentially an important paper. It remains to be seen if it will become accepted and built on by people working in the area of atmospheric thermodynamics.

anastassia_makarievaAtmos. Chem. Phys., 13, 1039-1056, 2013
www.atmos-chem-phys.net/13/1039/2013/
doi:10.5194/acp-13-1039-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.

Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

A. M. Makarieva1,2, V. G. Gorshkov1,2, D. Sheil3,4,5, A. D. Nobre6,7, and B.-L. Li2
1Theoretical Physics Division, Petersburg Nuclear Physics Institute, 188300, Gatchina, St. Petersburg, Russia
2XIEG-UCR International Center for Arid Land Ecology, University of California, Riverside, CA 92521, USA
3School of Environment, Science and Engineering, Southern Cross University, P.O. Box 157, Lismore, NSW 2480, Australia
4Institute of Tropical Forest Conservation, Mbarara University of Science and Technology, Kabale, Uganda
5Center for International Forestry Research, P.O. Box 0113 BOCBD, Bogor 16000, Indonesia
6Centro de Ciência do Sistema Terrestre INPE, São José dos Campos SP 12227-010, Brazil
7Instituto Nacional de Pesquisas da Amazônia, Manaus AM 69060-001, Brazil

Abstract. Phase transitions of atmospheric water play a ubiquitous role in the Earth’s climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns.

The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power – this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

Final Revised Paper (PDF, 503 KB)   Discussion Paper (ACPD)

Citation: Makarieva, A. M., Gorshkov, V. G., Sheil, D., Nobre, A. D., and Li, B.-L.: Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics, Atmos. Chem. Phys., 13, 1039-1056, doi:10.5194/acp-13-1039-2013, 2013.



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.