Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
“I asked the Zebra,
are you black with white stripes?
Or white with black stripes?
And the zebra asked me,
Are you good with bad habits?
Or are you bad with good habits?
Are you noisy with quiet times?
Or are you quiet with noisy times?
Are you happy with some sad days?
Or are you sad with some happy days?
Are you neat with some sloppy ways?
Or are you sloppy with some neat ways?
And on and on and on and on and on and on he went.
I’ll never ask a zebra about stripes…again.” -Shel Silverstein
When it comes to the classical world — the world on a macroscopic scale — we all feel comfortable using the word reality. While we may quibble over the finer, technical points of the definition of the word, you and I know reality when we see it.
There are all sorts of properties we assign to real objects: they have energy, they exist at certain points in space and moments in time, they have certain properties of motion, and are measurable and quantifiable in a variety of other ways.
This ranges from microbes here on Earth to the largest structures in the Universe: all of these are quantifiable as real in terms of energy, position, time, and momentum, among other properties.
But if we head into the quantum realm, down to scales so small that our classical laws and pictures break down, we discover that things are drastically different, and that reality no longer conforms to our expectations.
You might think of an atom the same way you think of a planet orbiting the Sun: an electron moving in orbit around the center-of-mass of the electron/nucleus system. But whereas if you knew a planet’s orbital properties and the mass of the star it was orbiting, you’d be able to know with certainty where that planet was and how it was moving (i.e., its position and momentum), the quantum world is a little different.
Okay, a lot different. Because you can no longer predict the position of that electron — only the probabilities of finding the electron in a certain position — as time goes on.
If you’re like most people, this is going to trouble you. It is so ingrained in us — by our own experience — that objects are real, particles are real, and that these real things have definitive properties, that we instinctively start asking questions like, “Okay, where is that particle, really, when we’re not looking at it?”
And we assume that this question makes sense. We assume that there is a real position for this real particle at every moment in time, and a real momentum, and a real amount of energy assigned to it. We assume that it’s our knowledge that’s somehow limited, and so we struggle to fit this troubling observation in with our picture of what reality is.
It’s no wonder that quantum mechanics has a number of different interpretations behind it: we’re trying to understand reality, and yet the things that we’re observing are completely unlike what we experience as reality! Some people, quite understandably, view this as a tremendous problem. After all, there’s no consensus as to which interpretation is the “right” one, or even the best one!
There are some interpretations that are demonstrably wrong: the idea that physics is local (things can only affect things they interact with), real (as opposed to complex, or partially imaginary), and deterministic cannot all be simultaneously true. So you might ask which ones are true, and I wouldn’t blame you for asking.
The problem is, not only are multiple interpretations equally valid, but none of them tell you anything more or less than any of the others! And there are plenty of valid ones; here’s a brief summary.
Rather than go through what the different interpretations are, I prefer to look at it in these terms:
It is what it is, and the only way to develop any sort of intuition for what’s going to happen in a given situation is… to figure out what’s going to happen in a variety of situations, until you begin to develop an intuition for it! In other words, the most lampooned quote of all time (when it comes to quantum mechanics),
“Shut up and calculate!” -David Mermin,
is actually the one-and-only thing you can actually do for yourself in order to better understand reality.
In other words, it doesn’t matter how you arrive at the results, and there are many path there that are equally good. What matters is that, irrespective of how you interpret it (or even whether you interpret it), what you call “reality” at the end of the day matches what your theory predicts.
If you can do that, then your physical theory — or your favorite interpretation — is just as valid as any other. And if it doesn’t, you’re compelled to discard it. However, and you should consider this a warning, this is not without danger.
This carries with it the danger that you can make something as philosophically complex as you want to satisfy as fully as nature will allow whatever preconceptions you have about how reality should behave. If you demand locality, you can force it. If you demand realism, you can force it. If you demand determinism, you can force that, too. If you demand wavefunction collapse, you can make that happen.
And if you demand non-locality, or non-realism, or non-determinism, or wavefunctions that never collapse, you can force those just as easily. Even if you want an interpretation where information travels faster than light, you can make one up, and it still works! But it’s no more a mirror of “reality” than one where it doesn’t.
In the end, all that matters is that your method of calculating predictions aligns with what you’ve observed. And if you can get it right, then you’ll understand reality as well as anyone.
So let other people be “embarrassed” for quantum mechanics. If you can let go of your classical notions of what an interpretation ought to be, you’ll have discovered something even better.
You’ll understand the quantum reality of our Universe.
2013-01-25 18:00:29
Source: http://scienceblogs.com/startswithabang/2013/01/25/quantum-reality/