Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Researchers are testing whether high-throughput DNA sequencing can help screen out abnormal embryos during in vitro fertilization. In a trial, researchers will use DNA sequencing to count the number of chromosomes in each of the embryos they create by fertilizing a woman’s eggs in a dish. An abnormal number of chromosomes is the most common reason for IVF to fail, experts say, and as many as 30 percent of fertilized human eggs have such abnormalities. By selecting only those embryos with the normal number of chromosomes to transfer into the uterus, doctors hope to improve the success rate of IVF.
Traditionally in an IVF procedure, doctors visually inspect embryos and then transfer those that appear healthy after a few days of growth—often more than one at a time, because many of the embryos won’t result in a successful pregnancy. If multiple embryos do implant successfully, however, it can be risky for both them and the mother, says Richard Scott, a reproductive endocrinologist and lead researcher in the trial, which is being conducted at Reproductive Medicine Associates of New Jersey.
To reduce such risks, some clinics, including Scott’s, are moving toward transferring only a single embryo, and new DNA analysis technologies are helping to ensure that they pick the most viable and healthy one. Researchers have already shown that other methods of chromosome screening can improve the success rate of IVF. DNA sequencing offers a more affordable way to do such tests because samples from multiple embryos can be analyzed simultaneously. That gain in efficiency lowers the cost of the procedure and could make chromosome screening feasible for more couples