Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Tweaking a protein expressed by most liver cancer cells has enabled scientists to make a vaccine that is exceedingly (90%) effective at preventing the disease in mice.
Alpha-Fetoprotein, or AFP – normally expressed during development and by liver cancer cells as well – has escaped attack in previous vaccine iterations because the body recognizes it as “self,” said Dr. Yukai He, immunologist at the Medical College of Georgia and Georgia Regents University Cancer Center.
Liver cancer is among the fastest-growing and deadliest cancers in the United States with a 17 percent three-year survival rate. Vaccines help direct the immune system to attack invaders by showing it a representative substance, called an antigen, that the body will recognize as foreign, in this case, AFP for liver cancer.
In a process called antigen engineering, He tweaked AFP just enough to get the immune system to recognize it but still keep the AFP expressed by liver cancer cells in the bull's eye, he and his colleagues report in the journal Hepatology.
AFP is expressed by about 80 percent of most common liver cancer cells but not typically by healthy adults. For cancer to flourish, cells must revert to an immature state, called dedifferentiation, which is why liver cancer cells express a protein during development and why the immune system can recognize AFP as “self.”