Online: | |
Visits: | |
Stories: |
With the development of the vision about number theoretically universal view about functional integration in WCW , a concrete vision about the exponent of Kähler action in Euclidian and Minkowskian space-time regions. The basic requirement is that exponent of Kähler action belongs to an algebraic extension of rationals and therefore to that of p-adic numbers and does not depend on the ordinary p-adic numbers at all – this at least for sufficiently large primes p. Functional integral would reduce in Euclidian regions to a sum over maxima since the troublesome Gaussian determinants that could spoil number theoretic universality are cancelled by the metric determinant for WCW.
The adelically exceptional properties of Neper number e, Kähler metric of WCW, and strong form of holography posing extremely strong constraints on preferred extremals, could make this possible. In Minkowskian regions the exponent of imaginary Kähler action would be root of unity. In Euclidian space-time regions expressible as power of some root of e which is is unique in sense that ep is ordinary p-adic number so that e is p-adically an algebraic number – p:th root of ep.
These conditions give conditions on Kähler coupling strength αK= gK2/4π (hbar=1)) identifiable as an analog of critical temperature. Quantum criticality of TGD would thus make possible number theoretical universality (or vice versa).
SK= π2/2gK2= π/8αK .
The condition reads SK=q =m/n if one allows roots of e in the extension. If one requires minimal extension of involving only e and its powers one would have SK=n. One obtains
1/αK= 8q/π ,
where the rational q=m/n can also reduce to integer. One cannot exclude the possibiity that q depends on the algebraic extension of rationals defining the adele in question.
For CP2 type extremals the value of p-adic prime should be larger than pmin=53. One can consider a situation in which large number of CP2 type vacuum extremals contribute and in this case the condition would be more stringent. The condition that the action for CP2 extremal is smaller than 2 gives
1/αK≤ 16/π ≈ 5.09 .
It seems there is lower bound for the p-adic prime assignable to a given space-time surface inside CD suggesting that p-adic prime is larger than 53× N, where N is particle number.
This bound has not practical significance. In condensed matter particle number is proportional to (L/a)3 – the volume divided by atomic volume. On basis p-adic mass calculations p-adic prime can be estimated to be of order (L/R)2. Here a is atomic size of about 10 Angstroms and R CP2 “radius. Using R≈ 104 LPlanck this gives as upper bound for the size L of condensed matter blob a completely super-astronomical distance L≤ a3/R2 ∼ 1025 ly to be compared with the distance of about 1010 ly travelled by light during the lifetime of the Universe. For a blackhole of radius rS= 2GM with p∼ (2GM/R)2 and consisting of particles with mass above M≈ hbar/R one would obtain the rough estimate M>(27/2)× 10-12mPlanck ∼ 13.5× 103 TeV trivially satisfied.
The latter condition gives n=54=2× 33 and 1/αK≈ 137.51. The deviation from the fine structure constant is Δ α/α= 3× 10-3 — .3 per cent. For n=53 one obtains 1/αK= 134.96 with error of 1.5 per cent. For n=55 one obtains 1/αK= 150.06 with error of 2.2 per cent. Is the relatively good prediction could be a mere accident or there is something deeper involved?
What about Minkowskian regions? It is difficult to say anything definite. For cosmic string like objects the action is non-vanishing but proportional to the area A of the string like object and the conditions would give quantization of the area. The area of geodesic sphere of CP2 is proportional to π. If the value of gK is same for Minkowskian and Euclidian regions, gK2∝ π2 implies SK ∝ A/R2π so that A/R2∝ π2 is required.
This approach leads to different algebraic structure of αK than the earlier arguments.
See the chapter Coupling Constant Evolution in Quantum TGD “Towards M-matrix”, and the chapter Unified Number Theoretic Vision of “Physics as Generalized Number Theory” or the article Could one realize number theoretical universality for functional integral?.
For a summary of earlier postings see Links to the latest progress in TGD.