Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
“It may be that ultimately the search for dark matter will turn out to be the most expensive and largest null result experiment since the Michelson-Morley experiment, which failed to detect the ether.” -John Moffat
Dark matter is a puzzle that’s now more than 80 years old: the presence of all the known, observable, detectable normal matter — the stuff in the standard model — cannot account for the gravitation of the astronomical objects we observe. But despite our inability to create or detect it in a laboratory, we’re certain of its existence in the Universe.
The true test of this comes from colliding galaxy clusters, which show a distinct separation between all the known “normal” components, which collide, heat up and emit light, and the gravitational components, which very clearly don’t. At this point, over a dozen distinct colliding clusters show this effect, from some of the smallest known galactic groups to the largest colliding cluster in the Universe: El Gordo.
Image credit: NASA, ESA, J. Jee (Univ. of California, Davis), J. Hughes (Rutgers Univ.), F. Menanteau (Rutgers Univ. & Univ. of Illinois, Urbana-Champaign), C. Sifon (Leiden Obs.), R. Mandelbum (Carnegie Mellon Univ.), L. Barrientos (Univ. Catolica de Chile), and K. Ng (Univ. of California, Davis).
Come get the whole thing on Mostly Mute Monday!