Online:
Visits:
Stories:
Profile image
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Tensor nets and S-matrices

Saturday, March 19, 2016 3:06
% of readers think this story is Fact. Add your two cents.

(Before It's News)

The concrete construction of scattering amplitudes has been the toughest challenge of TGD and the slow progress has occurred by identification of general principles with many side tracks. One of the key problems has been unitarity. The intuitive expectation is that unitarity should reduce to a local notion somewhat like classical field equations reduce the time evolution to a local variational principle. The presence of propagators have been however the the obstacle for locally realized unitarity in which each vertex would correspond to unitary map in some sense.

TGD suggests two approaches to the construction of S-matrix.

  1. The first approach is generalization of twistor program (this). What is new is that one does not sum over diagrams but there is a large number of equivalent diagrams giving the same outcome. The complexity of the scattering amplitude is characterized by the minimal diagram. Diagrams correspond to space-time surfaces so that several space-time surfaces give rise to the same scattering amplitude. This would correspond to the fact that the dynamics breaks classical determinism. Also quantum criticality is expected to be accompanied by quantum critical fluctuations breaking classical determinism. The strong form of holography would not be unique: there would be several space-time surfaces assignable as preferred extremals to given string world sheets and partonic 2-surfaces defining “space-time genes”.

  2. Second approach relies on the number theoretic vision and interprets scattering amplitudes as representations for computations with each 3-vertex identifiable as a basic algebraic operation (this). There is an infinite number of equivalent computations connecting the set of initial algebraic objects to the set of final algebraic objects. There is a huge symmetry involved: one can eliminate all loops moving the end of line so that it transforms to a vacuum tadpole and can be snipped away. A braided tree diagram is left with braiding meaning that the fermion lines inside the line defined by light-like orbit are braided. This kind of braiding can occur also for space-like fermion lines inside magnetic flux tubes and defining correlate for entanglement. Braiding is the TGD counterpart for the problematic non-planarity in twistor approach.

Third approach involving local unitary as an additional key element is suggested by tensor networks relying on the notion of perfect entanglement discussed by Preskill et al (see this and this). A detailed representation can be found in the article of Preskill et al ).

  1. Tensor networks provide an elegant representation of holography mapping interior states isometrically (in Hilbert space sense) to boundary states or vice versa for selected subsets of states defining the code subspace for holographic quantum error correcting code. Again the tensor net is highly non-unique but there is some minimal tensor net characterizing the complexity of the entangled boundary state.

  2. Tensor networks have two key properties, which might be abstracted and applied to the construction of S-matrix in zero energy ontology (ZEO): perfect tensors define isometry for any subspace defined by the index subset of perfect tensor to its complement and the non-unique graph representing the network. As far as the construction of Hilbert space isometry between local interior states and highly non-local entangled boundary states is considered, these properties are enough.

One cannot avoid the idea that these three constructions are different aspects of one and same construction and that tensor net construction with perfect tensors representing vertices could provide and additional strong constraint to the long sought for explicit recipe for the construction of scattering amplitudes. How tensor networks could the allow to generalize the notion of unitary S-matrix in TGD framework?

  1. Tensor networks suggests the replacement of unitary correspondence with the more general notion of Hilbert space isometry. This generalization is very natural in TGD since one must allow phase transitions increasing the state space and it is quite possible that S-matrix represents only isometry: this would mean that SS=Idin holds true but SS=Idout does not even make sense. This conforms with the idea that state function reduction sequences at fixed boundary of causal diamonds defining conscious entities give rise evolution implying that the size of the state space increases gradually as the system becomes more complex. Note that this gives rise to irreversibility understandandable in terms of NMP (this). It might be even impossible to formally restore unitary by introducing formal additional tensor factor to the space of incoming states if the isometric map of the incoming state space to outgoing state space is inclusion of hyperfinite factors.

  2. If the huge generalization of the duality of old fashioned string models makes sense, the minimal diagram represesenting scattering is expected to be a tree diagram with braiding and should allow a representation as a tensor network. The generalization of the tensor network concept to include braiding is trivial in principle: assign to the legs connecting the nodes defined by perfect tensors unitary matrices representing the braiding – here topological QFT allows realization of the unitary matrix. Besides fermionic degrees of freedom having interpretation as spin degrees of freedom at the level of “World of Classical Worlds” (WCW) there are also WCW orbital degrees of freedom. These two degrees of freedom factorize in the generalized unitarity conditions and the description seems much simpler in WCW orbital degrees of freedom than in WCW spin degrees of freedom.
  3. Concerning the concrete construction there are two levels involved, which are analogous to descriptions in terms of boundary and interior degrees of freedom in holography. The level of fundamental fermions assignable to string world sheets and their boundaries and the level of physical particles with particles assigned to sets of partonic 2-surface connected by magnetic flux tubes and associated fermionic strings. One could also see the ends of causal diamonds as analogous to boundary degrees of freedom and the space-time surface as interior degrees of freedom.

The description at the level of fundamental fermions corresponds to conformal field theory at string world sheets.

  1. The construction of the analogs of boundary states reduces to the construction of N-point functions for fundamental fermions assignable to the boundaries of string world sheets. These boundaries reside at 3-surfaces at the space-like space-time ends at CDs and at light-like 3-surfaces at which the signature of the induced space-time metric changes.

  2. In accordance with holography, the fermionic N-point functions with points at partonic 2-surfaces at the ends of CD are those assignable to a conformal field theory associated with the union of string world sheets involved. The perfect tensor is assignable to the fundamental 4-fermion scattering which defines the microscopy for the geometric 3-particle vertices having twistorial interpretation and also interpretation as algebraic operation.

What is important is that fundamental fermion modes at string world sheets are labelled by conformal weights and standard model quantum numbers. No four-momenta nor color quantum numbers are involved at this level. Instead of propagator one has just unitary matrix describing the braiding.

  • Note that four-momenta emerging in somewhat mysterious manner to stringy scattering amplitudes and mean the possibility to interpret the amplitudes at the particle level.

    Twistorial and number theoretic constructions should correspond to particle level construction and also now tensor network description might work.

    1. The 3-surfaces are labelled by four-momenta besides other standard model quantum numbers but the possibility of reducing diagram to that involving only 3-vertices means that momentum degrees of freedom effectively disappear. In ordinary twistor approach this would mean allowance of only forward scattering unless one allows massless but complex virtual momenta in twistor diagrams. Also vertices with larger number of legs are possible by organizing large blocks of vertices to single effective vertex and would allow descriptions analogous to effective QFTs.

    2. It is highly non-trivial that the crucial factorization to perfect tensors at 3-vertices with unitary braiding matrices associated with legs connecting them occurs also now. It allows to split the inverses of fermion propagators into sum of products of two parts and absorb the halves to the perfect tensors at the ends of the line. The reason is that the inverse of massless fermion propagator (also when masslessness is understood in 8-D sense allowing M4 mass to be non-vanishing) to be express as bilinear of the bi-spinors defining the twistor representing the four-momentum. It seems that this is absolutely crucial property and fails for massive (in 8-D sense) fermions.
  • For the details see the new chapter Holography and Quantum Error Correcting Codes: TGD View of “Hyper-Finite Factors, p-Adic Length Scale Hypothesis, And Dark Matter Hierarchy” or the article with the same title.

    For a summary of earlier postings see Links to the latest progress in TGD.



    Source: http://matpitka.blogspot.com/2016/03/tensor-nets-and-s-matrices.html

    Report abuse

    Comments

    Your Comments
    Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

    Top Stories
    Recent Stories

    Register

    Newsletter

    Email this story
    Email this story

    If you really want to ban this commenter, please write down the reason:

    If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.