Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Planet hunter: A new nanosatellite, called ExoPlanetSat, will search for Earthlike planets using novel optics, navigation, and control technology. It’s about the size of a loaf of bread.
Credit: Technology Review
Draper Laboratory and MIT have developed a satellite the size of a loaf of bread that will undertake one of the biggest tasks in astronomy: finding Earthlike planets beyond our solar system—or exoplanets—that could support life. It is scheduled to launch in 2012.
The "nanosatellite," called ExoPlanetSat, packs powerful, high-performance optics and new control and stabilization technology in a small package.
While there have been many small satellites, these are typically used to perform simple communication or observation missions. "We are doing something that has not been done before," says Séamus Tuohy, director of space systems at Draper.
ExoPlanetSat will search for planets by measuring the dimming of a star as an orbiting planet passes in front of it, a technique called transit observation. The satellite's light detector has two focal plane arrays—one for star tracking and for the transit observations. Measuring a star's dip in brightness precisely also allows the planet's size to be calculated. And by measuring the amount of time it takes the planet to complete its orbit, researchers can determine the planet's distance from its star.
To accurately measure a star's brightness, engineers must keep the spacecraft stable—incoming photons must hit the same fraction of a pixel at all times, says Seager, who is also a participating scientist for the Kepler satellite. "Any disturbances that shake the spacecraft will blur the image and make the measurements unusable," she says. "And smaller spacecrafts are easier to push around."Related