Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Courtesy of ESA
When stars much more massive than our Sun reach the end of their lives, their final demise is marked by a dramatic supernova explosion that destroys most of the star. But many leave behind compact, incredibly dense remnants known as neutron stars. Those detected have strong magnetic fields that focus emission into two highly directional beams. The neutron star rotates rapidly and if the beam points in the direction of the Earth we see a pulse of radiation at extremely regular intervals – hence the name pulsar.
Prof. Becker and his team are developing a novel navigation technology for spacecraft based on the regular emission of X-ray light from pulsars. Their periodic signals have timing stabilities comparable to atomic clocks and provide characteristic time signatures that can be used as natural navigation beacons, similar to the use of GPS satellites for navigation on Earth.
![]() |
Compilation by MPE. |
At the moment even the fastest spacecraft would take thousands of years to travel to the nearest star and far longer to explore the wider Galaxy so we are unlikely to see journeys like this happen for many centuries. Nonetheless, the pulsar-based navigation system could be in use in the near future.
Professor Becker gives two examples: “These X-ray beacons could augment the existing GPS/Galileo satellite navigation systems and provide autonomous navigation for interplanetary space probes and future manned missions to Mars.”
He adds: “Looking forward, it’s incredibly exciting to think that we have now the technology to chart our route to other stars and may even be able to help our descendants take their first steps into interstellar space.”
Contacts and sources:
Dr Robert Massey
Royal Astronomical Society
Read more at Nano Patents and Innovations