Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Mars Tugging On Approaching NASA Rover Curiosity

Sunday, August 5, 2012 5:42
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

The gravitational tug of Mars is now pulling NASA's car-size geochemistry laboratory, Curiosity, in for a suspenseful landing in less than 40 hours.
With Mars looming ever larger in front of it, NASA's Mars Science Laboratory spacecraft and its Curiosity rover are in the final stages of preparing for entry, descent and landing on the Red Planet at 10:31 p.m. PDT Aug. 5 (1:31 a.m. EDT Aug. 6). Curiosity remains in good health with all systems operating as expected. Today, the flight team uplinked and confirmed commands to make minor corrections to the spacecraft's navigation reference point parameters. This afternoon, as part of the onboard sequence of autonomous activities leading to the landing, catalyst bed heaters are being turned on to prepare the eight Mars Lander Engines that are part of MSL's descent propulsion system. As of 2:25 p.m. PDT (5:25 p.m. EDT), MSL was approximately 261,000 miles (420,039 kilometers) from Mars, closing in at a little more than 8,000 mph (about 3,600 meters per second).
 
 
This artist's scoreboard displays a fictional game between Mars and Earth, with Mars in the lead. 
Artist's concept of a scoreboard with Earth and Mars scores
Image credit: NASA/JPL-Caltech 

 
This global map of Mars was acquired on Aug. 2, 2012, by the Mars Color Imager instrument on NASA's Mars Reconnaissance Orbiter. One global map is generated each day to forecast weather conditions for the entry, descent and landing of NASA's Curiosity rover. The active dust storm observed south of Curiosity's landing site on July 31 has dissipated, leaving behind a dust cloud that will not pose a threat to the landing. 

The map is a rectangular projection of Mars (from 90 degrees latitude to minus 90 degrees latitude, and minus 180 degrees longitude to 180 degrees east longitude). The landing site is located on the right side of the map, near 137 degrees east longitude and 4.5 degrees south latitude. The map shows water ice clouds at equatorial latitudes that are typical for late southern winter, when Mars is farther from the sun. Along the southern (bottom) part of the map there are patches of orange clouds, indicating dust lofted into the atmosphere. Small, short-lived dust storms are common at this time of year on Mars and were taken into account when Curiosity's landing system was designed and tested. Larger and more long-lived dust storms are very rare at this time of year.

 

B4INREMOTE-aHR0cDovLzMuYnAuYmxvZ3Nwb3QuY29tLy03S0lNTlBNeDJDUS9VQjViV3BxaVdySS9BQUFBQUFBQUdXOC9FU1c4SWh2OTFmRS9zNjQwL21hcnMrZ2xvYmFsLkpQRw==
 
Image credit: NASA/JPL-Caltech/MSSS 

"After flying more than eight months and 350 million miles since launch, the Mars Science Laboratory spacecraft is now right on target to fly through the eye of the needle that is our target at the top of the Mars atmosphere," said Mission Manager Arthur Amador of NASA's Jet Propulsion Laboratory, Pasadena, Calif.

The spacecraft is healthy and on course for delivering the mission's Curiosity rover close to a Martian mountain at 10:31 p.m. Sunday, Aug. 5 PDT (1:31 a.m. Monday, Aug. 6 EDT). That's the time a signal confirming safe landing could reach Earth, give or take about a minute for the spacecraft's adjustments to sense changeable atmospheric conditions.

 
This graphic shows how navigators steering NASA's Mars Science Laboratory capsule — with the Curosity rover tucked inside — are aiming for a pinpoint location above Mars. 
B4INREMOTE-aHR0cDovLzIuYnAuYmxvZ3Nwb3QuY29tLy03ZTVCT0Yxb0Fjay9VQjViOGdvbk1BSS9BQUFBQUFBQUdYRS82RlpaUkRnMVAtdy9zNDAwL21hcnMrd2luZG93LkpQRw==
Image credit: NASA/JPL-Caltech 

The only way a safe-landing confirmation can arrive during that first opportunity is via a relay by NASA's Mars Odyssey orbiter. Curiosity will not be communicating directly with Earth as it lands, because Earth will set beneath the Martian horizon from Curiosity's perspective about two minutes before the landing.

"We are expecting Odyssey to relay good news," said Steve Sell of the JPL engineering team that developed and tested the mission's complicated "sky crane" landing system. "That moment has been more than eight years in the making."

A dust storm in southern Mars being monitored by NASA's Mars Reconnaissance Orbiter appears to be dissipating. "Mars is cooperating by providing good weather for landing," said JPL's Ashwin Vasavada, deputy project scientist for Curiosity.

Curiosity was approaching Mars at about 8,000 mph (about 3,600 meters per second) Saturday morning. By the time the spacecraft hits the top of Mars' atmosphere, about seven minutes before touchdown, gravity will accelerate it to about 13,200 mph (5,900 meters per second).

NASA plans to use Curiosity to investigate whether the study area has ever offered environmental conditions favorable for microbial life, including chemical ingredients for life.

"In the first few weeks after landing, we will be ramping up science activities gradually as we complete a series of checkouts and we gain practice at operating this complex robot in Martian conditions," said JPL's Richard Cook, deputy project manager for Curiosity.

The first Mars pictures expected from Curiosity are reduced-resolution fisheye black-and-white images received either in the first few minutes after touchdown or more than two hours later. Higher resolution and color images from other cameras could come later in the first week. Plans call for Curiosity to deploy a directional antenna on the first day after landing and raise the camera mast on the second day.

The big hurdle is landing. Under some possible scenarios, Curiosity could land safely, but temporary communication difficulties could delay for hours or even days any confirmation that the rover has survived landing.

The prime mission lasts a full Martian year, which is nearly two Earth years. During that period, researchers plan to drive Curiosity partway up a mountain informally called Mount Sharp. Observations from orbit have identified exposures there of clay and sulfate minerals that formed in wet environments.

The Mars Science Laboratory is a project of NASA’s Science Mission Directorate. The mission is managed by JPL, a division of the California Institute of Technology in Pasadena. Its rover, Curiosity, was designed, developed and assembled at JPL. Information about the mission and about ways to participate in challenges of the landing, including a new video game, is available at:http://www.nasa.gov/mars and http://mars.jpl.nasa.gov/msl/ .

For more information about NASA programs, visit: http://www.nasa.gov/ .

The California Institute of Technology in Pasadena manages JPL for NASA.

Contacts and sources:
Guy Webster/D.C. Agle 
Jet Propulsion Laboratory, Pasadena, Calif.
Dwayne Brown/Steve Cole 
NASA Headquarters, Washington

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.