Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
read more at Anne’s Astronomy News http://annesastronomynews.com/
A new scientific model to understand the amount of our Universe which is habitable developed by University of Aberdeen scientists was announced on September 7 at the British Science Festival, one of Europe’s largest science festivals that regularly attracts over 350 of the UK’s top scientists and speakers to discuss the latest developments in science with the public.
Artistic representation of all the five known potential habitable worlds including Gliese 581g, the best candidate for an Earth-like exoplanet so far. All of these planets are superterrans (aka Super-Earths) with masses estimated between two and ten Earth masses. Numbers below the planet names correspond to their similarity with Earth as measured in a scale from zero to one with the Earth Similarity Index, one being identical to Earth. Image Credit: The Planetary Habitability Laboratory (PHL)
Vast areas of environment which support life are known to exist in the Earth’s subsurface but until now understanding of habitable environments on other planets has only taken into account their surfaces. The new model could vastly increase where we could expect to find life.
Sean McMahon from the University of Aberdeen’s School of Geosciences said: “Life ‘as we know it’ requires liquid water. Traditionally, planets have been considered ‘habitable’ if they are in the ‘Goldilocks zone’. They need to be not too close to their sun but also not too far away for liquid water to persist, rather than boiling or freezing, on the surface. However, we now know that many microorganisms—perhaps half of all living things on Earth—reside deep in the rocky crust of the planet, not on the surface.”
Suns warm planet surfaces but heat also comes from planet interiors. Crust temperature increases with depth so planets that are too cold for liquid water on the surface may be sufficiently warm underground to support life.
Sean McMahon from the University of Aberdeen’s School of Geosciences. Credit The University of Aberdeen
Sean McMahon continues: “We have developed a new model to show how ‘Goldilocks zones’ can be calculated for underground water and hence life. Our model shows that habitable planets could be much more widespread than previously thought.”
An environment is ‘habitable’ if it is suitable for life as we know it. Habitable environments are not necessarily inhabited.
A ‘circumstellar habitable zone’ (CHZ or HZ) is a range of distances from a star. Planets that form from Earth-like materials within a star’s CHZ are able to maintain liquid water on their surfaces.
CHZs can be thought of as ‘Goldilocks Zones’ because Earth-like planets orbiting within them are neither too close to the star (too hot) nor too far away (too cold) for water to remain liquid on their surfaces. This concept has been well-established for over 20 years.
Sean McMahon: “We introduce a new term, ‘subsurface-habitability zone’ (SSHZ) to denote the range of distances from a star within which planets are habitable at any depth below their surfaces up to a certain maximum. (For instance, one might speak of the “SSHZ for 2 km depth”, within which planets can support liquid water 2 km or less underground).”
Source: The University of Aberdeen
n/a
2012-09-10 09:34:58
Source: http://annesastronomynews.com/habitable-planets-could-be-much-more-widespread-than-thought/