Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Speedy Black Hole Holds Galaxy’s History

Wednesday, February 27, 2013 18:21
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

 

 
A rapidly rotating supermassive black hole has been found in the heart of a spiral galaxy by ESA’s XMM-Newton and NASA’s NuSTAR space observatories, opening a new window into how galaxies grow.

Supermassive black holes are thought to lurk in the centre of almost all large galaxies, and scientists believe that the evolution of a galaxy is inextricably linked with the evolution of its black hole. 

How fast a black hole spins is thought to reflect the history of its formation. In this picture, a black hole that grows steadily, fed by a uniform flow of matter spiralling in, should end up spinning rapidly. Rapid rotation could also be the result of two smaller black holes merging.

Rapidly rotating black hole accreting matter
Image credit: NASA/JPL-Caltech

On the other hand, a black hole buffeted by small clumps of material hitting from all directions will end up rotating relatively slowly.

These scenarios mirror the formation of the galaxy itself, since a fraction of all the matter drawn into the galaxy finds its way into the black hole. Because of this, astronomers are keen to measure the spin rates of black holes in the hearts of galaxies.

One way of doing so is to observe X-rays emitted just outside the ‘event horizon’, the boundary surrounding a black hole beyond which nothing, including light, can escape.

In particular, hot iron atoms produce a strong signature of X-rays at a specific energy, which is smeared out by the rotation of the black hole. The nature of this smearing can then be used to infer the spin rate.

Using this technique, previous observations have suggested there are extremely rapidly spinning black holes in some galaxies. However, confirming the spin rate has been very difficult, because the X-ray spectrum can also be smeared out by absorbing clouds of gas lying close to the disc. Until now, telling the two scenarios apart has been impossible.

For roughly 36 hours in July 2012, ESA’s XMM-Newton and NASA’s NuSTAR – the Nuclear Spectroscopic Telescope Array – simultaneously observed the spiral galaxy NGC 1365. XMM-Newton captured the lower energy X-rays, NuSTAR the higher energy data.

The combined data proved to be key to unlocking the puzzle. A spinning black hole model makes a clear prediction for the ratio of high-energy to low-energy X-rays. The same is true for an absorbing cloud of gas.

But importantly, the predictions are different and the new data agree only with a rapidly spinning black hole. This suggests that the galaxy has grown steadily with time, with material streaming uniformly into the central black hole.

However, astronomers cannot yet rule out a single large event where two galaxies and their black holes subsequently merged, producing a sudden acceleration of the resulting supermassive black hole.

“But we can completely rule out the absorption model,” says Guido Risaliti, INAF – Osservatorio Astrofisico di Arcetri, Italy, who led the investigation.

“Now that we know how to measure black hole spin rates for certain, we can more confidently use them to infer the evolution of their host galaxies.”

 
Contacts and sources:
ESA

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.