Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Unlocking The Mystery Behind Saturn’s Moonlets

Thursday, February 14, 2013 12:51
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

 

 
A quintet of Saturn’s moons come together in the Cassini spacecraft’s field of view for this portrait. 

Credit: Cassini

Research by Loughborough University physicists casts new light on Saturn’s moonlets – and could help solve some of the mysteries surrounding planet formation.

Saturn’s F ring has long been of interest to scientists as its features rapid change on timescales from hours to years, and it is probably the only location in the solar system where large scale collisions happen on a daily basis.

When Cassini began imaging the Saturn system back in 2006 the discovery of a proliferation of moonlets – small natural satellites – in Saturn’s F ring was an unexpected find. Powerful tidal forces were thought to minimize the clumping of particles necessary to create these moonlets and scientists were at a loss to explain the high population in Saturn’s rings.

 
Credit: Cassini

As the processes at work in Saturn’s rings are comparable to those of a protoplanetary disk, understanding them could be key to unlocking the secrets of our own solar system. Writing in the journal Scientific Reports, researchers from Loughborough’s Department of Physics have revealed a new computer model which could help solve this mystery.

“Saturn’s rings offer a nearby astrophysical laboratory to study and observe – in real time – many mechanisms and processes theorised to take place in astrophysical disks with the use of the Cassini space craft,” explains Loughborough physicist Phil Sutton. “And Saturn’s F ring is probably the most active in the solar system. That’s why we think it is so fascinating.”

Images from NASA’s Cassini spacecraft have revealed half-mile-sized (kilometer-sized) objects punching through parts of Saturn’s F ring, leaving glittering trails behind them. These trails in the rings, which scientists are calling “mini-jets,” fill in a missing link in our story of the curious behavior of the F ring.

Credit:  NASA   
Work on Saturn’s F ring, the outermost of the dense rings, has shown that the nearby ‘shepherd’ moon Prometheus directly influences the formation of moonlets in the ring itself. These moonlets can themselves create structures within the F ring. The interaction between Prometheus and the F ring transpires because of the difference in alignment of the elliptical F ring and the elliptical orbit of Prometheus. Over time changes in the rotational axis alters this alignment, resulting in very close approaches to the F ring by Prometheus. During the closest approaches over the course of one orbital period Prometheus moves towards and then back away from the F ring, creating structures known as streamer-channels.

Previous numerical modelling has used a massless F ring (where particles were non-interacting with each other) interacting with Prometheus and showed that the density of particles at streamer-channel edges increased over a series of orbital periods after the original encounter. However, the modelling did not account for the fast growth of moonlets necessary to explain the large population observed by Cassini

 
Titan seen beside Saturn
Credit: Cassini

“In our paper we report the results of our numerical modelling that assumed an F ring with mass where all particles were gravitationally interacting,” Mr Sutton explains. “What we see is an accelerated growth of the density seen at the same places on the streamer-channel edges than previously reported. This increase is around 5% each orbital period for the first five orbits, compared with a 0% increase for the same regions over the same time period using the non- interacting model.

“Where all the particles in the F ring interact with each other we see a more fluid-like motion. It is this fluid-like motion that creates turbulence and subsequent vortices within the F ring as a perpendicular force to the flow (Prometheus) disrupts it.

“Vortices have extensively been shown to offer an accelerated mechanism for planetesimal formation in protoplanetary disks, concentrating particle towards their centres. Here we can show that the same idea can be applied to moonlet formation within Saturn’s rings ­– especially the F ring where tidal forces are constantly trying to destroy clumps or moonlets – and could provide a mechanism that would allow the proliferation of moonlets observed by Cassini.”

 
 
Contacts and sources:

Judy Wing
Loughborough University

 

Citation: Sutton, P.J. & Kusmartsev, F.V. Gravitational Vortices And Clump Formation In Saturn’s F ring During An Encounter With Prometheus. Sci. Rep. 3, 1276; DOI:10.1038/srep01276 (2013).

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.