Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Martian Meteorite Puzzle Solved: When Did Mars Lava Rock Reach Earth

Wednesday, July 24, 2013 13:34
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

 
By directing energy beams at tiny crystals found in a Martian meteorite, a Western University-led team of geologists has proved that the most common group of meteorites from Mars is almost 4 billion years younger than many scientists had believed – resolving a long-standing puzzle in Martian science and painting a much clearer picture of the Red Planet’s evolution that can now be compared to that of habitable Earth. 

 
Credit: Royal Ontario Museum

In a paper published today in the journal Nature, lead author Desmond Moser, an Earth Sciences professor from Western’s Faculty of Science, Kim Tait, Curator, Mineralogy, Royal Ontario Museum, and a team of Canadian, U.S., and British collaborators show that a representative meteorite from the Royal Ontario Museum (ROM)’s growing Martian meteorite collection, started as a 200 million-year-old lava flow on Mars, and contains an ancient chemical signature indicating a hidden layer deep beneath the surface that is almost as old as the solar system. 

 
A team led by Western University’s Desmond Moser has solved a Martian meteorite age puzzle that paints a much clearer picture of the Red Planet’s evolution that can now be compared to habitable Earth. 

The team, comprised of scientists from ROM, the University of WyomingUCLA, and the University of Portsmouth, also discovered crystals that grew while the meteorite was launched from Mars towards Earth, allowing them to narrow down the timing to less than 20 million years ago while also identifying possible launch locations on the flanks of the supervolcanoes at the Martian equator.

More details can be found in their paper titled, “Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon.”

Moser and his group at Western’s Zircon & Accessory Phase Laboratory (ZAPLab), one of the few electron nanobeam dating facilities in the world, determined the growth history of crystals on a polished surface of the meteorite. The researchers combined a long-established dating method (measuring radioactive uranium/lead isotopes) with a recently developed gently-destructive, mineral grain-scale technique at UCLA that liberates atoms from the crystal surface using a focused beam of oxygen ions.

Moser estimates that there are roughly 60 Mars rocks dislodged by meteorite impacts that are now on Earth and available for study, and that his group’s approach can be used on these and a much wider range of heavenly bodies. 

“Basically, the inner solar system is our oyster. We have hundreds of meteorites that we can apply this technique to, including asteroids from beyond Mars to samples from the Moon,” says Moser, who credits the generosity of the collectors that identify this material and make it available for public research.

 
 
Contacts and sources:

Jeff Renaud
University of Western Ontario

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.