Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
An image of the ring around the star Lambda Orionis, made with the ESA Planck satellite. The ring, here seen in pink, is around 200 light years across. In the image red represents the anomalous microwave emission (AME), green represents the emission from interstellar plasma and the blue is emission arising from electrons moving in magnetic fields.
The relative strength of these processes changes with wavelength, and are separated using multi-wavelength measurements from Planck, from NASA’s WMAP satellite, and from ground-based radio telescopes, giving maps of each component.
The new maps show regions covering huge areas of our sky that produce AME; this process, only discovered in 1997, could account for a large amount of galactic microwave emission with a wavelength near 1 cm. One example where it is exceptionally bright is the 200 light year-wide dust ring around the Lambda Orionis nebula (the ‘head’ of the familiar Orion constellation). This is the first time the ring has been seen in this way.
A wide field map also shows synchrotron loops and spurs (where charged particles spiral around magnetic fields), including the huge Loop 1, discovered more than 50 years ago. Remarkably, astronomers are still very uncertain about its distance – it could be anywhere between 400 and 25,000 li
Contacts and sources:
Dr Robert Massey
Royal Astronomical Society (RAS)
Dr Mike Peel
Jodrell Bank Centre for Astrophysics