Online:
Visits:
Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Cosmic Cannibalism Turns Star into Brown Dwarf

Tuesday, May 31, 2016 11:33
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Astronomers have detected a sub-stellar object that used to be a star, after being consumed by its white dwarf companion. The research, which appears in the journal Nature, was partly supported by a grant from the Royal Astronomical Society.

An international team of astronomers made the discovery by observing a very faint binary system, J1433, located 730 light-years away. The system consists of a low-mass object – about 60 times the mass of Jupiter – in an extremely tight 78-minute orbit around a white dwarf (the remnant of a star like our Sun).

An artist’s illustration of the white dwarf (right) stripping mass from the brown dwarf.
 Credit: Rene Breton, University of Manchester.

Due to their close proximity, the white dwarf strips mass from its low-mass companion. This process has removed about 90 per cent of the mass of the companion, turning it from a star into a brown dwarf.

Most brown dwarfs are ‘failed stars’, objects that were born with too little mass to shine brightly by fusing hydrogen in their cores. By contrast, the brown dwarf in this system was born as a fully-fledged star, but has been stripped to its current mass by billions of years of stellar cannibalism.

The study used the X-Shooter instrument at the Very Large Telescope (VLT) in Cerro Paranal, Chile, in order to directly detect and characterise a system that has survived such a traumatic transition.

A temperature map of the irradiated brown dwarf, measured in Kelvin (for the equivalent in degrees Celsius subtract 273).
Credit: Juan Venancio Hernández Santisteban, University of Southampton

Lead author Juan Venancio Hernández Santisteban, a PhD student at the University of Southampton, said: “X-Shooter is a unique instrument that can observe astronomical objects simultaneously all the way from the ultraviolet to the infrared. This allowed us to dissect the light of this system and uncover the hidden signal from the faint brown dwarf.

“Our knowledge of binary evolution suggests that, if the companion star can survive the transition, brown dwarfs should be common in this type of system. However, despite several efforts, only a few candidate systems with tentative evidence for brown dwarf companions had previously been found. Our results now confirm that the successful transformation of a star to a brown dwarf is indeed possible.”

The astronomers also used their data to map the surface temperature across the brown dwarf. This turns out to be non-uniform, since this cool sub-stellar object is strongly irradiated by its much hotter white dwarf companion. The map shows a clear temperature difference between the dayside (the side facing the white dwarf) and the nightside. On average, the difference amounts to 57 degrees Celsius, but the hottest and coldest parts of the brown dwarf’s surface differ by a full 200 degrees Celsius.

Professor Christian Knigge, also from the University of Southampton, who initiated and supervised the project, said: “The construction of this surface temperature map is a significant achievement. In many giant planets – the so-called ‘hot Jupiters’ – irradiation by the host star completely overwhelms the planet’s internal heat flux. By contrast, internal heat flux and external irradiation are comparable for the brown dwarf in our study. This represents an unexplored regime, making such systems valuable as laboratories for irradiated (sub-) stellar and planetary atmospheres.”

Contacts and sources:
Glenn Harris
University of Southampton

 

Citation: “An irradiated brown-dwarf companion to an accreting white dwarf”, Juan V. Hernández Santisteban, Christian Knigge, Stuart P. Littlefair, Rene P. Breton, Vikram S. Dhillon, Boris T. Gänsicke, Thomas R. Marsh, Magaretha L. Pretorius, John Southworth and Peter H. Hauschildt, Nature, doi:10.1038/nature17952.



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.