Online:
Visits:
Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Prototype Gravitational Wave Spacecraft Sets New Free Fall Record

Wednesday, June 8, 2016 4:22
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Hypothesized by Albert Einstein a century ago, gravitational waves are oscillations in the fabric of spacetime, moving at the speed of light and caused by the acceleration of massive objects.

They can be generated, for example, by supernovas, neutron star binaries spiralling around each other, and pairs of merging black holes.

Even from these powerful objects, however, the fluctuations in spacetime are tiny by the time they arrive at Earth – smaller than 1 part in 100 billion billion.

The successful LISA Pathfinder mission paves the way for the LISA space-based, gravitational wave observatory scheduled for launch in 2034.

 

A key component of a future gravitational wave observatory passed a series of tests with flying colors. The Laser Interferometer Space Antenna (LISA) Pathfinder mission is a European Space Agency (ESA) project that proves in principle that an orbiting formation of spacecraft will be able to function as a space-based gravitational wave observatory. A paper detailing the first results from the LISA Pathfinder mission appears in Physical Review Letters along with an accompanying Viewpoint commentary in Physics.

Credit: ESA

At the heart of the experiment is a two-kilogram cube of a high-purity gold and platinum alloy, called a test mass. The cube is nestled inside the shell-like LISA Pathfinder spacecraft, and has been in orbit since February 2016. The researchers found the test mass could be sufficiently stable and isolated from outside forces to fly in space and detect a whole new range of violent events that create gravitational waves.

The LISA Pathfinder spacecraft is equipped with electrodes adjacent to each side of the test mass cube to detect the relative position and orientation of the test mass with respect to the spacecraft. An array of tiny thrusters on the outside of the spacecraft compensates for forces that could affect the test mass orbit, chiefly including the pressure from the solar photon flux.

The mission is a crucial test of systems that will be incorporated in three spacecraft that will comprise the Laser Interferometer Space Antenna (LISA) gravitational wave observatory scheduled to launch in 2034. The LISA observatory will follow a heliocentric orbit trailing fifty million kilometers behind the Earth. Each LISA spacecraft will contain two test masses like the one currently in the LISA Pathfinder spacecraft. The LISA Pathfinder mission’s success is a crucial step in developing the LISA observatory.

 
The demonstration of the mission’s key technologies opens the door to the development of a large space observatory capable of detecting gravitational waves emanating from a wide range of exotic objects in the Universe.
 
In the LISA observatory mission planned for 2034, laser interferometers will measure the distances between test masses housed in spacecraft flying in a triangular configuration roughly a million kilometers on a side. The LISA Pathfinder spacecraft contains a second test mass to form a minuscule equivalent of one leg of the triangular LISA formation. The second Pathfinder mass is electrostatically manipulated to maintain its position relative to the free falling test mass. The masses are separated by only about a third of a meter, which is far too short for the detection of gravitational waves, but is vital for testing the systems that will eventually make up the LISA observatory.

Researchers report that the system reduces acceleration noise between the test masses to less than 0.54 x 10-15 g/(Hz)^½ over a frequency range of 0.7 mHz to 20 mHz. The noise in this range is five times lower than the LISA Pathfinder design threshold, and within a factor of 1.25 of the LISA observatory requirements. Above 60 mHz, acceleration noise is two orders of magnitude better than design requirements. According to the researchers, the measured performance of the Pathfinder mission systems would allow gravitational wave observations close to the original plan for the LISA Observatory.

 
ESA’s LISA Pathfinder mission has demonstrated the technology needed to build a space-based gravitational wave observatory.

Results from only two months of science operations show that the two cubes at the heart of the spacecraft are falling freely through space under the influence of gravity alone, unperturbed by other external forces, to a precision more than five times better than originally required.

Credit: ESA

In a paper published today in Physical Review Letters, the LISA Pathfinder team show that the test masses are almost motionless with respect to each other, with a relative acceleration lower than 1 part in ten millionths of a billionth of Earth’s gravity

 
LISA Pathfinder was launched on 3 December 2015 at 04:04 GMT (05:04 CET) onboard a Vega rocket from Kourou, French Guiana. It was initially placed into a slightly elliptical parking orbit. From there, it is using its own propulsion module to reach its final operational orbit, a 500 000 by 800 000-km halo orbit around the first Sun-Earth Lagrange point, at 1.5 million km from Earth. LISA Pathfinder’s initial operational phase will last 11 months and the mission could be extended by an additional 6 months.

Sophisticated technologies are needed to register such minuscule changes, and gravitational waves were directly detected for the first time only in September 2015 by the ground-based Laser Interferometer Gravitational-Wave Observatory (LIGO).

This experiment saw the characteristic signal of two black holes, each with some 30 times the mass of the Sun, spiralling towards one another in the final 0.3 seconds before they coalesced to form a single, more massive object.

The signals seen by LIGO have a frequency of around 100 Hz, but gravitational waves span a much broader spectrum. In particular, lower-frequency oscillations are produced by even more exotic events such as the mergers of supermassive black holes.

With masses of millions to billions of times that of the Sun, these giant black holes sit at the centres of massive galaxies. When two galaxies collide, these black holes eventually coalesce, releasing vast amounts of energy in the form of gravitational waves throughout the merger process, and peaking in the last few minutes.

 
Contacts and sources:

James Riordon
American Physical Society

ESA 



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.