Online: | |
Visits: | |
Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
Coffee cups, smartphones, doughnuts — at some level, they’re all mere matter. The standard model of particle physics encompasses the basic building blocks of everything we see around us. It explains a lot about the world we know, but very little about the worlds beyond it.
Dark matter, for example, is beyond its reach, and yet this intriguing material is thought to be far more abundant than the ‘normal’ stuff. Evidence of its existence is derived from the movements of astronomical objects and the way light bends around them, which hint at lots of “missing” mass.
Credit: NASA WMAP Science Team/Wikimedia Commons
The perplexing properties of this type of matter, which is undetectable to our senses, suggest that there are fundamentally different particles involved. Scientists around the world are attempting to shine a light into this unknown territory, notably by studying the scope to detect dark matter by other means.
“New physics in space” is one such project exploring the possibility of new physics beyond our experience. Launched in December 2015 for a period of two years, it focuses on the analysis of cosmic rays as a means to learn more about dark matter and its constituent particles.
More specifically, the project will look into an anomaly observed in the composition of cosmic radiation, which might be partly caused by the annihilation or decay of dark matter particles. The research is backed by a fellowship grant awarded by the Marie Skłodowska-Curie actions of the Horizon 2020 programme.