Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Literal Roots of Fear Run Deep in The Brain

Friday, March 18, 2011 18:07
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Fear is a natural part of our emotional life and acts as a necessary protection mechanism. However, fears sometimes grow beyond proportions and become difficult to shed.

Scientists from Freiburg, Basel and Bordeaux have used computer simulations to understand the processes within the brain during the formation and extinction of fears.

One group of nerve cells in the brain controls the fear behaviour (right). This can be suppressed by a second group of nerve cells (left) – but the fear is only masked, and has not disappeared completely

Crdit: Carlos Toledo/Bernstein Center Freiburg

In the current issue of the scientific journal “PLoS Computational Biology”, Ioannis Vlachos from the Bernstein Center Freiburg and colleagues propose for the first time an explanation for how fears that were seemingly overcome are in reality only hidden.

The reason for the persistency of fears is that, literally, their roots run deep: Far below the cerebral cortex lies the “amygdala”, which plays a crucial role in fear processes. Fear is commonly investigated in mice by exposing them simultaneously to a neutral stimulus – a certain sound, for example – and an unpleasant one.

This leads to the animals being frightened of the sound as well. Context plays an important role in this case: If the scaring sound is played repeatedly in a new context without anything bad happening, the mice shed their fear again. It returns immediately, however, if the sound is presented in the original, or even a completely novel context. Had the mice not unlearned to be frightened after all? The fact that fears can be “masked” has been known for some time.

Recently, two co-authors of the present study discovered that two groups of nerve cells within the amygdala are involved in this process. By creating a model of the amygdala’s neuronal network, Ioannis Vlachos and colleagues were now able to find an explanation for how such a masking of fears is implemented in the brain: One group of cells is responsible for the fear response, the second for its suppression.

Activity of the latter inhibits the former and, thus, prevents fear signals to be transmitted to other parts of the brain. Nevertheless, the change in their connections that resulted in an increased activity in the fear-coding neurons in the first place, is still present.

As soon as the masking by the fear-suppressing neurons disappears, for example by changing the context, these connections come into action again – the fear returns. According to the scientists, these insights can be transferred to us humans, helping to treat fears more successfully in the future.

Source: Albert-Ludwigs-Universität Freiburg

Citation: Vlachos I, Herry C, Lüthi A, Aertsen A and Kumar A (2011) Context-Dependent Encoding of Fear and Extinction Memories in a Large-Scale Network Model of the Basal Amygdala. PLoS Comput Biol 7(3): e1001104. doi:10.1371/journal.pcbi.1001104



Read more at Nano Patents and Innovations



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.