Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

First Photo Of Shadow Of Single Atom

Tuesday, July 3, 2012 18:35
% of readers think this story is Fact. Add your two cents.

(Before It's News)

In an international scientific breakthrough, a Griffith University research team has been able to photograph the shadow of a single atom for the first time.
Shadow of a single atom
Credit: 
Griffith University 

“We have reached the extreme limit of microscopy; you can not see anything smaller than an atom using visible light,” Professor Dave Kielpinski of Griffith University’s Centre for Quantum Dynamics in Brisbane, Australia.

“We wanted to investigate how few atoms are required to cast a shadow and we proved it takes just one,” Professor Kielpinski said.

Published this week in Nature Communications, “Absorption imaging of a single atom “is the result of work over the last 5 years by the Kielpinski/Streed research team.

At the heart of this Griffith University achievement is a super high-resolution microscope, which makes the shadow dark enough to see.

No other facility in the world has the capability for such extreme optical imaging.

Holding an atom still long enough to take its photo, while remarkable in itself, is not new technology; the atom is isolated within a chamber and held in free space by electrical forces.

Professor Kielpinski and his colleagues trapped single atomic ions of the element ytterbium and exposed them to a specific frequency of light. Under this light the atom’s shadow was cast onto a detector, and a digital camera was then able tocapture the image.

“By using the ultra hi-res microscope we were able to concentrate the image down to a smaller area than has been achieved before, creating a darker image which is easier to see”, Professor Kielpinski said.

The precision involved in this process is almost beyond imagining.

“If we change the frequency of the light we shine on the atom by just one part in abillion, the image can no longer be seen,” Professor Kielpinski said.

Research team member, Dr Erik Streed, said the implications of these findings are far reaching.

“Such experiments help confirm our understanding of atomic physics and may be useful for quantum computing,” Dr Streed said.

There are also potential follow-on benefits for biomicroscopy.

Cartoon of process to obtain shadow of an atom image
Credit: 
Griffith University 

“Because we are able to predict how dark a single atom should be, as in how much light it should absorb in forming a shadow, we can measure if the microscope is achieving the maximum contrast allowed by physics.”

“This is important if you want to look at very small and fragile biological samples such as DNA strands where exposure to too much UV light or x-rays will harm the material.

“We can now predict how much light is needed to observe processes within cells,under optimum microscopy conditions, without crossing the threshold and destroying them.”

And this may get biologists thinking about things in a different way.

“In the end, a little bit of light just might be enough to get the job done.”
Contacts and sources:
Helen Wright
Griffith University



Read more at Nano Patents and Innovations



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.