Visitors Now: | |
Total Visits: | |
Total Stories: |
Story Views | |
Now: | |
Last Hour: | |
Last 24 Hours: | |
Total: |
The semiconductor industry likes to have complete control over its production – and it can now work with one unknown less. Studies of glass undertaken by researchers in the group headed by Markus Heyde and Hans-Joachim Freund at the Fritz Haber Institute of the Max Planck Society have now provided several insights into the atomic structure of an important raw material used in the chip industry, which uses amorphous silica as an insulator in every transistor. “Previously, we knew nothing about what happens here,” says Markus Heyde. “It is generally quite astonishing how little is known about glass, which is so important in nature, in our daily life and for many technical applications.” Therefore, if scientists now ascertain the precise structure of this material class, it could assist not least the semiconductor industry to improve the processing of amorphous silica.
However, the findings could also be useful in the search for new, powerful catalysts, which reduce the energy required for a chemical reaction, steer it in the desired direction or even make it possible at all. Disordered silica often serves as the substrate of the actual catalyst and affects its properties; one additional good reason to find out more about the substrate material. And that is exactly what the researchers in Berlin have done.
The first chance to check an 80-year-old proposal for the structure
“This is the first time we have been able to directly observe which characteristic elements the structure possesses and which patterns occur in it,” says Markus Heyde. According to the observations, silicon and oxygen atoms take their turns in the individual silica layers and form a network of rings that lie next to each other like soap bubbles floating on water, and also assume sizes which differ almost as much – starting with rectangular rings with only four atoms through to those with nine or more atoms. Hexagonal rings are the most frequent, and the rings become all the rarer the further the number of their atoms deviates from six.
It had so far not been possible to check the structure proposed by William Zachariasen, as X-ray diffraction, the method of choice to determine the structure of materials, cannot be used in glasses and in amorphous materials in general – at least, not for determining the precise positions of the atoms. The Berlin-based researchers succeeded in doing just this with a trick; however, they designed a two-dimensional model of a glass. In an ultrahigh vacuum chamber they produced just two atomic layers of silica on a substrate of the precious metal ruthenium, which they had earlier coated with an oxygen layer.
The completely planar structure allows the scientists to look at the structure
“The structure of the two-dimensional glass provides us with important information about the structure of a three-dimensional glass,” says Markus Heyde. This is primarily due to the fact that the completely planar glass film allows researchers to view its very own structure for the first time. In planar surfaces the positions of the individual atoms can be determined, even if the structure is amorphous.
In a preliminary study, the scientists scanned amorphous silica with a scanning tunnelling microscope, which tells them where the oxygen atoms are located. This already revealed the irregular meshes of the network which William Zachariasen proposed as the structure of glass. In two further studies, the researchers also scanned the surfaces of their samples with a non-contact atomic force microscope which can also detect the silicon atoms. They thus obtained an accurate image of all atomic positions in the two-dimensional glass.
Knowing the glass structure helps to develop catalysts
The scientists also investigated the transition between an amorphous and a crystalline silica film. “We determined that, apart from the hexagons, it is mainly pentagonal and heptagonal shapes that occur at the boundary initially – i.e. the most similar rings,” says Markus Heyde. The further they moved their microscope’s gaze from the crystalline to the amorphous region, the more the ring sizes deviated from the crystalline hexagonal structure.
Contacts and sources:
Dr. Markus Heyde