Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Trigger For Explosive Volcanic Eruptions Identified

Friday, October 12, 2012 14:31
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

Scientists from the University of Southampton have identified a repeating trigger for the largest explosive volcanic eruptions on Earth.

The Las Cañadas volcanic caldera on Tenerife, in the Canary Islands, has generated at least eight major eruptions during the last 700,000 years. These catastrophic events have resulted in eruption columns of over 25km high and expelled widespread pyroclastic material over 130km. By comparison, even the smallest of these eruptions expelled over 25 times more material than the 2010 eruption of Eyjafjallajökull, Iceland. 

This is the Las Cañadas volcano.

Credit: Barry Marsh  


By analysing crystal cumulate nodules (igneous rocks formed by the accumulation of crystals in magma) discovered in pyroclastic deposits of major eruptions, the scientists found that pre-eruptive mixing within the magma chamber – where older cooler magma mixed with younger hotter magma – appears to be the repeating trigger in large-scale eruptions. 

The diagram shows the repeating development of the Las Cañadas magma chamber.
Credit: Tom Gernon  
 
These nodules trapped and preserved the final magma beneath the volcano immediately before eruption. Dr Rex Taylor, Senior Lecturer in Ocean and Earth Science at the University of Southampton, investigated nodules and their trapped magma to see what caused the eruptions. He found that the nodules provide a record of the changes occurring in the magma plumbing right through to the moment the volcano erupted.

Dr Taylor says: "These nodules are special because they were ripped from the magma chamber before becoming completely solid – they were mushy, like balls of coarse wet sand. Rims of crystals in the nodules grew from a very different magma, indicating a major mixing event occurred immediately before eruption. Stirring young hot magma into older, cooler magma appears to be a common event before these explosive eruptions." 

These are Southampton students conducting fieldwork on the Las Cañadas volcanic caldera.
Credit: Barry Marsh    


Co-author of the study, Dr Tom Gernon, Lecturer in Ocean and Earth Science at the University of Southampton, says: "The analysis of crystal nodules from the volcano documents the final processes and changes immediately prior to eruption – those triggering the catastrophic eruptions. The very presence of mushy nodules in the pyroclastic deposits suggests that the magma chamber empties itself during the eruption, and the chamber then collapses in on itself forming the caldera."

The Las Cañadas volcano is an IAVCEI (International Association of Volcanology and Chemistry of the Earth's Interior) Decade Volcano – identified by the international community as being worthy of particular study in light of their history of large, destructive eruptions and proximity to populated area.

Dr Gernon, who is based at the National Oceanography Centre at Southampton's waterfront campus with Dr Taylor, adds: "Our findings will prove invaluable in future hazard and risk assessment on Tenerife and elsewhere. The scale of the eruptions we describe has the potential to cause devastation on the heavily populated island of Tenerife and major economic repercussions for the wider European community."


Contacts and sources: 
The paper is published in the latest issue of the open access journal Scientific Reports.

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.