Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Photo: Oldest Galaxy Yet Found, Formed 700 Million Years After The Big Bang

Thursday, October 24, 2013 10:25
% of readers think this story is Fact. Add your two cents.

(Before It's News)

University of California, Riverside astronomers Bahram Mobasher and Naveen Reddy are members of a team that has discovered the most distant galaxy ever found. The galaxy is seen as it was just 700 million years after the Big Bang, when the universe was only about 5 percent of its current age of 13.8 billion years.

This is an artist’s rendition of the newly discovered most distant galaxy z8_GND_5296. The galaxy looks red in the actual Hubble Space Telescope image because the collective blue light from stars get shifted toward redder colors due to the expansion of the universe and its large distance from Earth.

B4INREMOTE-aHR0cDovLzIuYnAuYmxvZ3Nwb3QuY29tLy1JOEVEZ2F4MzNQYy9VbWxWOHNFdXVuSS9BQUFBQUFBQVZiWS9Sb3ZiS3VLQUNiWS9zNjQwL29sZGVzdCtnYWxheHkuanBn
Credit: V. Tilvi, S.L. Finkelstein, C. Papovich, NASA, ESA, A. Aloisi, The Hubble Heritage, HST, STScI, and AURA.

In collaboration with astronomers at the University of Texas at Austin, Texas A & M University, and the National Optical Astronomy Observatories, Mobasher and Reddy identified a very distant galaxy candidate using deep optical and infrared images taken by the Hubble Space Telescope. Follow-up observations of this galaxy by the Keck Telescope in Hawai’i confirmed its distance.

In searching for distant galaxies, the team selected several candidates, based on their colors, from the approximately 100,000 galaxies identified in the Hubble Space Telescope images taken as a part of the CANDELS survey, the largest project ever performed by the Hubble Space Telescope, with a total allocated time of roughly 900 hours. However, using colors to sort galaxies is tricky because some nearby objects can masquerade as distant galaxies.

This image from the Hubble Space Telescope CANDELS survey highlights the most distant galaxy in the universe with a measured distance, dubbed z8_GND_5296. The galaxy’s red color alerted astronomers that it was likely extremely far away and, thus, seen at an early time after the Big Bang. A team of astronomers including Steven Finkelstein of the University of Texas at Austin and Vithal Tilvi of Texas A&M University measured the exact distance using the Keck I telescope with the new MOSFIRE spectrograph. They found that this galaxy is seen at about 700 million years after the Big Bang, when the universe was just 5% of its current age of 13.8 billion years.
B4INREMOTE-aHR0cDovLzQuYnAuYmxvZ3Nwb3QuY29tLy1Sa3I2a2pUUVQ5WS9VbWxXVnFPSGVqSS9BQUFBQUFBQVZiZy8tcm95R2hmdmNray9zNjQwLzYzNjIxX3dlYi5qcGc=
Credit: V. Tilvi, Texas A&M University; S.L. Finkelstein, University of Texas at Austin; C. Papovich, Texas A&M University; CANDELS Team and Hubble Space Telescope/NASA

The paper’s lead author is Steven Finkelstein, an assistant professor at the University of Texas at Austin and 2011 Hubble Fellow who previously was a postdoctoral research associate at Texas A&M under the mentorship of Texas A&M astrophysicist Casey Papovich, who is second author as well as current mentor to Tilvi. Ten other international institutions collaborated on the effort, from California to Massachusetts and Italy to Israel.

The galaxy, known by its catalog name z8_GND_5296, fascinated the researchers. Whereas our home, the Milky Way, creates about one or two Sun-like stars every year or so, this newly discovered galaxy forms around 300 a year and was observed by the researchers as it was 13 billion years ago. That’s the time it took for the galaxy’s light to travel to Earth. Just how mind-boggling is that? A single light year, which is the distance light travels in a year, is nearly six trillion miles. Because the universe has been expanding the whole time, the researchers estimate the galaxy’s present distance to be roughly 30 billion light years away.

“Because of its distance we get a glimpse of conditions when the universe was only about 700 million years old — only 5 percent of its current age of 13.8 billion years,” said Papovich, an associate professor in the Department of Physics and Astronomy and a member of the George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy since 2008.

Papovich notes that researchers are able to accurately gauge the distances of galaxies by measuring a feature from the ubiquitous element hydrogen called the Lyman alpha transition, which emits brightly in distant galaxies. It’s detected in nearly all galaxies that are seen from a time more than one billion years from the Big Bang, but getting closer than that, the hydrogen emission line, for some reason, becomes increasingly difficult to see.

“We were thrilled to see this galaxy,” Finkelstein said. “And then our next thought was, ‘Why did we not see anything else? We’re using the best instrument on the best telescope with the best galaxy sample. We had the best weather — it was gorgeous. And still, we only saw this emission line from one of our sample of 43 observed galaxies, when we expected to see around six. What’s going on?’”

The researchers suspect they may have zeroed in on the era when the universe made its transition from an opaque state in which most of the hydrogen is neutral to a translucent state in which most of the hydrogen is ionized. So it’s not necessarily that the distant galaxies aren’t there. It could be that they’re hidden from detection behind a wall of neutral hydrogen fog, which blocks the hydrogen emission signal.

Tilvi notes this is one of two major changes in the fundamental essence of the universe since its beginning — the other being a transition from a plasma state to a neutral state. He is leading the effort on a follow-up paper that will use a sophisticated statistical analysis to explore that transition further.


Therefore, to measure the distance to these galaxies in a definitive way, astronomers use spectroscopy — specifically, how much the wavelength of a galaxy’s light has shifted towards the red-end of the spectrum as it travels from the galaxy to Earth, due to the expansion of the universe. This phenomenon is called “redshift.” Since the expansion velocity (redshift) and distances of galaxies are proportional, the redshift gives astronomers a measure of the distance to galaxies.

“What makes this galaxy unique, compared to other such discoveries, is the spectroscopic confirmation of its distance,” said Mobasher, a professor of physics and observational astronomy.

Mobasher explained that because light travels at about 186,000 miles per second, when we look at distant objects, we see them as they appeared in the past. The more distant we push these observations, the farther into the past we can see.

“By observing a galaxy that far back in time, we can study the earliest formation of galaxies,” he said. “By comparing properties of galaxies at different distances, we can explore the evolution of galaxies throughout the age of the universe.”

The discovery was made possible by a new instrument, MOSFIRE, commissioned on the Keck Telescope. Not only is the instrument extremely sensitive, but it is designed to detect infrared light — a region of the spectrum to where the wavelength of light emitted from distant galaxies is shifted — and could target multiple objects at a time. It was the latter feature that allowed the researchers to observe 43 galaxy candidates in only two nights at Keck, and obtain higher quality observations than previous studies.

By performing spectroscopy on these objects, researchers are able to accurately gauge the distances of galaxies by measuring a feature from the ubiquitous element hydrogen called the Lyman alpha transition. It is detected in most galaxies that are seen from a time more than one billion years from the Big Bang, but as astronomers probe earlier in time, the hydrogen emission line, for some reason, becomes increasingly difficult to see.

Of the 43 galaxies observed with MOSFIRE, the research team detected this Lyman alpha feature from only one galaxy, z8-GND-5296, shifted to a redshift of 7.5. The researchers suspect they may have zeroed in on the era when the universe made its transition from an opaque state in which most of the hydrogen is neutral to a translucent state in which most of the hydrogen is ionized (called the Era of Re-ionization).

“The difficulty of detecting the hydrogen emission line does not mean that the galaxies are absent,” said Reddy, an assistant professor of astronomy. “It could be that they are hidden from detection behind a wall of neutral hydrogen.”

The team’s observations showed that z8-GND-5296 is forming stars extremely rapidly — producing each year ~300 times the mass of our sun. By comparison, the Milky Way forms only two to three stars per year. The new distance record-holder lies in the same part of the sky as the previous record-holder (redshift 7.2), which also happens to have a very high rate of star-formation.

“So we’re learning something about the distant universe,” said Steven Finkelstein at the University of Texas at Austin, who led the project. “There are way more regions of very high star formation than we previously thought. There must be a decent number of them if we happen to find two in the same area of the sky.”

“With the construction and commissioning of larger ground-based telescopes — the Thirty Meter Telescope in Hawai’i and Giant Magellan Telescope in Chile — and the 6.5 meter James Webb Space Telescope in space, by the end of this decade we should expect to find many more such galaxies at even larger distances, allowing us to witness the process of galaxy formation as it happens,” Mobasher said.

“It’s exciting to know we’re the first people in the world to see this,” said Vithal Tilvi, a Texas A&M postdoctoral research associate and co-author of the paper, set to be available online at http://dx.doi.org/10.1038/nature12657 after Oct. 24. “It raises interesting questions about the origins and the evolution of the universe.”

Contacts and sources:

Iqbal Pittalwala
University of California – Riverside

Vimal Patel
Texas A&M University



Source: http://nanopatentsandinnovations.blogspot.com/2013/10/photo-oldest-galaxy-yet-found-formed.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.