Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Nearby Starburst Galaxy Reveals Hidden Details

Monday, December 9, 2013 23:01
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Using the new, high-frequency capabilities of the National Science Foundation’s Robert C. Byrd Green Bank Telescope (GBT), astronomers have captured never-before-seen details of the nearby starburst galaxy M82. These new data highlight streamers of material fleeing the disk of the galaxy as well as concentrations of dense molecular gas surrounding pockets of intense star formation.
This composite image of starburst galaxy M82 shows the distribution of dense molecular gas as seen by the GBT (yellow and red) and the background stars and dust as seen by Hubble (blue). The yellow areas correspond to regions of intense star formation. The red areas trace outflows of gas from the disk of the galaxy.
B4INREMOTE-aHR0cDovLzQuYnAuYmxvZ3Nwb3QuY29tLy0tZ0FvMGlZOFRONC9VcWFzYWJlcWktSS9BQUFBQUFBQVducy9lSzZBTFp1OUpmcy9zNjQwL204Ml9wcjIwMTNfZnJvbV9ucmFvLmpwZw==
Credit: Bill Saxton (NRAO/AUI/NSF); Hubble/NASA
M82, which is located approximately 12 million light-years away in the constellation Ursa Major, is a classic example of a starburst galaxy — one that is producing new stars tens- to hundreds-of-times faster than our own Milky Way. Its relatively nearby location made it an ideal target for the GBT’s newly equipped “W-Band” receiver, which is capable of detecting the millimeter wavelength light that is emitted by molecular gas. This new capability makes the GBT the world’s largest single-dish, millimeter-wave telescope.

“With this new vision, we were able to look at M82 to explore how the distribution of molecular gas in the galaxy corresponded to areas of intense star formation,” said Amanda Kepley, a post-doctoral fellow at the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia, and lead author on a paper accepted for publication in the Astrophysical Journal Letters. “Having this new capability may help us understand why stars form where they do.”

Astronomers recognize that dense molecular gas goes hand-in-hand with areas of star formation, but the connection is poorly understood and this relationship may be different in different types of galaxies. By creating wide-angle maps of the gas in galaxies, astronomers hope to better understand this complex interplay.

This is a composite image made from three satellite observation projects. Visible aspects of the galaxy were taken by the HST. It is also shown in invisible infrared and X-ray spectrums: Spitzer photographed it in infrared, which shows dust emission, and Chandra photographed it in X-ray (showing mostly synchrotron emissions from fast electrons). The X-ray emission is shown in the blue parts.
B4INREMOTE-aHR0cDovLzQuYnAuYmxvZ3Nwb3QuY29tLy1ROW1GLW42N0ZXby9VcWF0WUhMcC1oSS9BQUFBQUFBQVduNC9Sc0huQkIzSzJjQS9zNjQwLzczOXB4LU04Ml9DaGFuZHJhX0hTVF9TcGl0emVyLmpwZw==
Credit: NASA
To date, however, these kinds of observations have not been easy since molecules that are used to map the distribution of dense gas, like HCN (hydrogen cyanide) and HCO+ (formylium), shine feebly in millimeter light. With its new W-Band receiver, the GBT was able to make highly sensitive, wide-angle images of these gases in and around M82.

“The GBT data clearly show billowing concentrations of dense molecular gas huddled around areas that are undergoing bursts of intense star formation,” said Kepley. “They also reveal giant outflows of ionized gas fleeing the disk of the galaxy. These outflows are driven by star formation deep within the galaxy.”

This capability will enable astronomers to quickly survey entire galaxies and different parts within galaxies. Such surveys would complement higher resolution observations with new Atacama Large Millimeter/submillimeter Array (ALMA) telescope in Chile.

The 100-meter GBT is located in the National Radio Quiet Zone and the West Virginia Radio Astronomy Zone, which protect the incredibly sensitive telescope from unwanted radio interference.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Contacts and sources:
Charles Blue
National Radio Astronomy Observatory



Source: http://www.ineffableisland.com/2013/12/nearby-starburst-galaxy-reveals-hidden.html

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.