Online: | |
Visits: | |
Stories: |
TGD differs in several respects from quantum field theories and string models. The basic mathematical difference is that the mathematically poorly defined notion of path integral is replaced with the mathematically well-defined notion of functional integral defined by the Kähler function defining Kähler metric for WCW (“world of classical worlds”). Apart from quantum jump, quantum TGD is essentially theory of classical WCW spinor fields with WCW spinors represented as fermionic Fock states. One can say that Einstein's geometrization of physics program is generalized to the level of quantum theory.
It has been clear from the beginning that the gigantic super-conformal symmetries generalizing ordinary super-conformal symmetries are crucial for the existence of WCW Kähler metric. The detailed identification of Kähler function and WCW Kähler metric has however turned out to be a difficult problem. It is now clear that WCW geometry can be understood in terms of the analog of AdS/CFT duality between fermionic and space-time degrees of freedom (or between Minkowskian and Euclidian space-time regions) allowing to express Kähler metric either in terms of Kähler function or in terms of anti-commutators of WCW gamma matrices identifiable as super-conformal Noether super-charges for the symplectic algebra assignable to δ M4+/-× CP2. The string model description of gravitation emerges and also the TGD based view about dark matter becomes more precise.
Kähler function, Kähler action, and connection with string models
The definition of Kähler function in terms of Kähler action is possible because space-time regions can have also Euclidian signature of induced metric. Euclidian regions with 4-D CP2 projection – wormhole contacts – are identified as lines of generalized Feynman diagrams – space-time correlates for basic building bricks of elementary particles. Kähler action from Minkowskian regions is imaginary and gives to the functional integrand a phase factor crucial for quantum field theoretic interpretation. The basic challenges are the precise specification of Kähler function of “world of classical worlds” (WCW) and Kähler metric.
There are two approaches concerning the definition of Kähler metric: the conjecture analogous to AdS/CFT duality is that these approaches are mathematically equivalent.
The basic question concerns the attribute “preferred”. Physically the preferred extremal is analogous to Bohr orbit. What is the mathematical meaning of preferred extremal of Kähler action? The latest step of progress is the realization that the vanishing of generalized conformal charges for the ends of the space-time surface fixes the preferred extremals to high extent and is nothing but classical counterpart for generalized Virasoro and Kac-Moody conditions.
It is clear that the information carried by WCW metric about 3-surface is rather limited and that the larger the number of string world sheets, the larger the information. This conforms with strong form of holography and the notion of measurement resolution as a property of quantums state. Clearly. Duality means that Kähler function is determined either by space-time dynamics inside Euclidian wormhole contacts or by the dynamics of fermionic strings in Minkowskian regions outside wormhole contacts. This duality brings strongly in mind AdS/CFT duality. One could also speak about fermionic emergence since Kähler function is dictated by the Kähler metric part from a real part of gradient of holomorphic function: a possible identification of the exponent of Kähler function is as Dirac determinant.
Realization of super-conformal symmetries
The detailed realization of various super-conformal symmetries has been also a long standing problem but
recent progress leads to very beautiful overall view.
Strong form of holography implied by strong form of general coordinate invariance strongly suggests that super-conformal invariance in the interior of the space-time surface is a broken gauge invariance in the sense that the super-conformal charges for a sub-algebra with conformal weights vanishing modulo some integer n vanish. The proposal is that n corresponds to the effective Planck constant as heff/h=n. For string world sheets super-conformal symmetries are not gauge symmetries and strings dominate in good approximation the fermionic dynamics.
Interior dynamics for fermions, the role of vacuum extremals, and dark matter
The key role of CP2-type and M4-type vacuum extremals has been rather obvious from the beginning but the detailed understanding has been lacking. Both kinds of extremals are invariant under symplectic transformations of δ M4× CP2, which inspires the idea that they give rise to isometries of WCW. The deformations CP2-type extremals correspond to lines of generalized Feynman diagrams. M4 type vacuum extremals in turn are excellent candidates for the building bricks of many-sheeted space-time giving rise to GRT space-time as approximation. For M4 type vacuum extremals CP2 projection is (at most 2-D) Lagrangian manifold so that the induced Kähler form vanishes and the action is fourth-order in small deformations. This implies the breakdown of the path integral approach and of canonical quantization, which led to the notion of WCW.
If the action in Minkowskian regions contains also string area, the situation changes dramatically since strings dominate the dynamics in excellent approximation and string theory should give an excellent description of the situation: this of course conforms with the dominance of gravitation.
If one assumes that for non-standard values of Planck constant only n-multiples of super-conformal algebra in interior annihilate the physical states, interior conformal gauge degrees of freedom become partly dynamical. The identification of dark matter as macroscopic quantum phases labeled by heff/h=n conforms with this.
The emergence of dark matter corresponds to the emergence of interior dynamics via breaking of super-conformal symmetry. The induced spinor fields in the interior of flux tubes obeying Kähler Dirac action should be highly relevant for the understanding of dark matter. The assumption that dark particles have essentially same masses as ordinary particles suggests that dark fermions correspond to induced spinor fields at both string world sheets and in the space-time interior: the spinor fields in the interior would be responsible for the long range correlations characterizing heff/h=n. Magnetic flux tubes carrying dark matter are key entities in TGD inspired quantum biology. Massless extremals represent second class of M4 type non-vacuum extremals.
This view forces once again to ask whether space-time SUSY is present in TGD and how it is realized. With a motivation coming from the observation that the mass scales of particles and sparticles most naturally have the same p-adic mass scale as particles in TGD Universe I have proposed that sparticles might be dark in TGD sense. The above argument leads to ask whether the dark variants of particles correspond to states in which one has ordinary fermion at string world sheet and 4-D fermion in the space-time interior so that dark matter in TGD sense would almost by definition correspond to sparticles!