Online:
Visits:
Stories:
Profile image
By OLED-Info (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Graphene enhances artificial muscles’ durability

Tuesday, May 26, 2015 4:41
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Researchers at the Korea Advanced Institute of Science and Technology (KAIST) managed to create durable artificial muscles using a graphene electrode. Ionic polymer metal composites (IPMCs), or artificial muscles, change in size or shape when exposed to electric fields and could be extremely useful in the fields of robotics and prosthetics. 

KAIST ionic polymer-graphene composite (IPGC) actuator image

IPMC motors, (referred to as actuators), are created from a molecular membrane that is stretched between two metal electrodes. Upon applying an electric field, a redistribution of ions is caused that forces the structure to bend. These structures do not consume a lot of power and are able to mimic life-like motions. These devices, however, have a number of disadvantages like cracks that form on the metal electrodes and cause ions to leak through the electrodes and reduce performance. A possible solution to this problem is embodied in the researchers’ thin electrode, based on an ionic polymer-graphene composition (IPGC). These new electrodes repel water and are very resistant to cracking. They also have a robust inner surface that allows the migration of ions within the membrane to cause bending.



Source: http://www.graphene-info.com/graphene-enhances-artificial-muscles-durability

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.