Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Carbon, Carbon Everywhere, But Not From The Big Bang

Wednesday, May 11, 2011 16:12
% of readers think this story is Fact. Add your two cents.

(Before It's News)

As Star Trek is so fond of reminding us, we’re carbon-based life forms. But the event that jump-started the universe, the Big Bang, didn’t actually produce any carbon, so where the heck did it – and we – come from?  An NC State researcher has helped create supercomputer simulations that demonstrate how carbon is produced in stars, proving an old theory correct.
More than 50 years ago, an astronomer named Fred Hoyle deduced that when three helium nuclei – or alpha particles – come together inside the core of a star, they have difficulty combining to form carbon-12, the stuff we’re made of.  So he predicted a new state of carbon-12, one with an energy tuned just right to make the formation of carbon possible in stars. This new state is now known as the Hoyle state.
Later experimentation demonstrated that the theory was correct, but no one had ever been able to reproduce the Hoyle state from scratch, starting from the known interactions of protons and neutrons. If the Hoyle state didn’t show up in those calculations, then the calculations must be incorrect or incomplete.
NC State physicist Dean Lee, along with German colleagues Evgeny Epelbaum, Hermann Krebs, and Ulf-G. Meissner, had previously developed a new method for describing all the possible ways that protons and neutrons can bind with one another inside nuclei. This “effective field theory” is formulated on a complex numerical lattice that allows the researchers to run simulations that show how particles interact. When the researchers put six protons and six neutrons on the lattice, the Hoyle state appeared together with other observed states of carbon-12, proving the theory correct from first principles.
“We’ve had simple models of the Hoyle state using three alpha particles for a long time, but the first principles calculations weren’t giving anything close,” Lee says. “Our method places the particles into a simulation with certain space and time parameters, then allows them to do what they want to do. Within those simulations, the Hoyle state shows up.”
Their research appears in the May 13 issue of Physical Review Letters.
Lee adds, “This work is valuable because it gives us a much better idea of the kind of ‘fine-tuning’ nature has to do in order to produce carbon in stars.”
The Department of Physics is part of NC State’s College of Physical and Mathematical Sciences.

Contacts and sources: 

Ab initio calculation of the Hoyle state”
Authors: Dean Lee, North Carolina State University; Evgeny Epelbaum and Hermann Krebs, Institut fur Theoretische Physik II, Ruhr-Universitat Bochum, Germany; Ulf-G. Meissner, Helmholtz-Institut fur Strahlen-und Kernphysik and Bethe Center for Theoretical Physics, Universitat Bonn, Germany
Published:  May 9 online and May 13 in print in Physical Review Letters



Read more at Nano Patents and Innovations



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.