Visitors Now:
Total Visits:
Total Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Videos: Total Solar Eclipse Australia – Nov. 13, 2012

Wednesday, November 14, 2012 11:54
% of readers think this story is Fact. Add your two cents.

(Before It's News)

 

 

 
On Nov. 13, 2012, a narrow corridor in the southern hemisphere experienced a total solar eclipse. The corridor lay mostly over the ocean but also cut across the northern tip of Australia where both professional and amateur astronomers gathered to watch. During a solar eclipse one can see – using appropriate instruments to protect the eyes since you should never look at the sun directly – dim structures around the edges of the sun. 

These structures are the sun’s atmosphere, the corona, which extends beyond the more easily seen surface, known as the photosphere. In modern times, we know that the corona is constantly on the move. Made of electrified gas, called plasma, the solar material dances in response to huge magnetic fields on the sun. Structural changes in these magnetic fields can also give rise to giant explosions of radiation called solar flares, or expulsions of solar material called coronal mass ejections, CMEs – which make the corona a particularly interesting area to study.
 

The total solar eclipse of 13-14 November 2012 was only visible to ground-based observers situated in northern Australia, while ESA’s Sun-watching satellite Proba-2 enjoyed three partial eclipses from its viewpoint in space. The constant change in viewing angle of Proba-2 as it orbits the Earth meant that the satellite passed through the Moon’s shadow a total of three times during the eclipse event. The video was produced from images taken by Proba-2′s SWAP imager, which snaps the Sun in ultraviolet light to reveal stormy active regions on the solar disc.

The apparent noise in the movie results from high energy particles hitting Proba-2′s electronics as the spacecraft passes through the South Atlantic Anomaly. The dimming in the movie is an effect as part of the satellite’s orbit passes through the shadow of the Earth.

 

Since Proba-2 orbits Earth about 14.5 times per day, it can dip in and out of the Moon’s shadow around the time of a solar eclipse. The constant change in viewing angle of Proba-2 meant that the satellite passed through the shadow three times during the eclipse yesterday, as shown in the video presented here.

As the Sun was never completely covered up from Proba-2’s vantage point, each eclipse was only partial. 

The video was produced from images taken by Proba-2’s SWAP imager, which snaps the Sun in ultraviolet light. Stormy active regions on the Sun’s face are revealed, including sunspots, the roots of some large solar flares and coronal mass ejections that are occasionally directed towards Earth.

The apparent noise in the movie results from high energy particles hitting Proba-2′s electronics as the spacecraft passes through the South Atlantic Anomaly. The dimming in the movie is an effect as part of the satellite’s orbit passes through the shadow of the Earth.

At the time of the total eclipse as seen from the ground, Proba-2 saw the full disc of the Sun.

“The satellite also spent hours collecting data of the solar environment further away from the Sun before and after the main eclipse event, providing context for the ground-based observations,” said Joe Zender, Proba-2 mission manager. 

The Moon moves in the front of the Sun, seen through clouds at Palm Cove, Australia.

Partial solar eclipse 

Credits: Anik De Groof

Observing in visible light extremely close to the solar surface is only possible from the ground during eclipses when the bright solar disc is temporarily obscured, briefly exposing the Sun’s bright atmosphere, or corona, and the red glow of the chromosphere.
 visible light observations with the extreme ultraviolet images from Proba-2 gives us a unique opportunity to access difficult-to-see regions of the Sun at different wavelengths, during a rare event such as a total solar eclipse,” added Joe.

Observers on the ground watched in awe as darkness swept across the land for a little over 2 minutes. Proba-2 scientist Anik De Groof watched the event with thousands of others along the Australian coast at Palm Cove.

“We got all a bit nervous when after sunrise the partially eclipsed Sun was covered by a big cloud, but 5 minutes before totality, the cloud dissolved and we could watch ‘Baily’s beads’ form – the effect where beads of sunlight shine through the rugged lunar landscape,” said Anik.

“At totality we could see the red chromosphere and the corona in the most beautiful conditions – it was fantastic!”

Australians will have another chance to see a solar eclipse in May 2013, although because the Moon will be slightly further away from the Earth, it won’t block the whole Sun, resulting in an ‘annular eclipse’. Europe will have to wait until November 2013 before the opportunity arises to see a partial solar eclipse across much of the south.

Meanwhile, ESA’s fleet of Sun-watching spacecraft will continue to monitor the Sun’s stormy behaviour as it unleashes its plasma load out into space and towards Earth. Scientists will get even closer to the action in 2017 with the launch of Solar Orbiter, which will travel to observe the Sun from a daring distance of just 42 million kilometres, inside the orbit of planet Mercury.

 

Source: NASA and ESA

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.