Visitors Now:
Total Visits:
Total Stories:
Profile image
By European Southern Observatory (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

New Laser Improves VLT’s Capabilities

Thursday, February 21, 2013 14:11
% of readers think this story is Fact. Add your two cents.

(Before It's News)

A new and more powerful laser has successfully completed testing at ESO’s Paranal Observatory and has been formally accepted today. This new laser source is called PARLA and forms a vital part of the Laser Guide Star Facility (LGSF) at ESO’s Very Large Telescope (VLT).

The laser is used to generate an artificial star about 90 kilometres up in the atmosphere [1]. By creating and observing such a bright point of light astronomers can probe the turbulence in the layers of the atmosphere above the telescope. This information is then used to adjust deformable mirrors in real time in order to correct most of the disturbances caused by the constant movement of atmosphere and create much sharper images.

The new laser will greatly improve the reliability and flexibility in operating the LGSF. It uses similar technology to that which will also be employed in the four lasers of the future Adaptive Optics Facility currently under development at ESO. The new laser delivers up to 7 Watts of output and is very stable.

During the commissioning and for demonstration purposes, some challenging targets were successfully observed using the new laser in conjunction with different VLT instruments. These included the dwarf planet Haumea and its moons and the peculiar radio galaxy Centaurus A.

This upgrade of the laser source takes advantage of a new solid-state Raman fibre laser technology currently under development at ESO, together with industrial partners, for the ESO Adaptive Optics Facility. It has already demonstrated greater reliability, which makes difficult observations possible more often. This facility will allow ESO to carry out challenging programmes that need laser guide stars every time the atmospheric conditions are suitable.

The original PARSEC dye laser used so far was close to the end of its lifetime after six years of service, during which it helped to make important new discoveries. The upgrade simplifies greatly the laser operation and gives astronomers more flexibility in planning their observations.

Notes

[1] An artificial star is created where the laser interacts with the 10-kilometre thick layer of neutral sodium atoms in the mesosphere causing them to fluoresce. Atomic sodium has an optical transition at a wavelength of 589 nanometres. The laser parameters are tuned to efficiently excite this atom.

Courtesy of European Southern Observatory



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.