Online:
Visits:
Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

‘Cannibalism’ Between Stars: New Research Shows the Turbulent Past of Our Sun

Saturday, February 6, 2016 11:22
% of readers think this story is Fact. Add your two cents.

(Before It's News)

Stars are born inside a rotating cloud of interstellar gas and dust, which contracts to stellar densities thanks to its own gravity. Before finding itself on the star, however, most of the cloud lands onto a circumstellar disk forming around the star owing to conservation of angular momentum. The manner in which the material is transported through the disk onto the star, causing the star to grow in mass, has recently become a major research topic in astrophysics.

This is a Simulation of a gravitationally unstable circumstellar disk by means of hydrodynamic calculations. Protoplanetary ‘embryo’ form in the disc thanks to gravitational fragmentation. The three small pictures show the successive ‘disappearance’ of the lump by the star.
B4INREMOTE-aHR0cHM6Ly8xLmJwLmJsb2dzcG90LmNvbS8taWxNbTZBVFVpRTAvVnJZdUp0VlhQN0kvQUFBQUFBQUJMX1kvWFl4RC1SeUVMMW8vczY0MC8xMDgzNzZfd2ViLmpwZw==
Credit: Copyright: Eduard Vorobyov, Universität Wien

It turned out that stars may not accumulate their final mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. The young FU Orionis star in the constellation of Orion is the prototype example, which showed an increase in brightness by a factor of 250 over a time period of just one year, staying in this high-luminosity state now for almost a century.

One possible mechanism that can explain these brightening events was put forward 10 years ago by Eduard Vorobyov, now working at the Astrophysical Department of the Vienna University, in collaboration with Shantanu Basu from the University of Western Ontario, Canada.

According to their theory, stellar brightening can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Like the process of throwing logs into a fireplace, these episodes of clump consumption release excess energy which causes the young star to brighten by a factor of hundreds to thousands. During each episode, the star is consuming the equivalent of one Earth mass every ten days. After this, it may take another several thousand years before another event occurs.

Eduard Vorobyov describes the process of clump formation in circumstellar disks followed by their migration onto the star as “cannibalism on astronomical scales”. These clumps could have matured into giant planets such as Jupiter, but instead they were swallowed by the parental star. This invokes an interesting analogy with the Greek mythology, wherein Cronus, the leader of the first generation of Titans, ate up his newborn children (though failing to gobble up Zeus, who finally brought death upon his father).

These are the polarized intensities of four selected FU Orionis objects observed with the 8.2-meter Subaru Telescope. Significant asymmetries, such as elbows, arms and broad trends — typical of gravitationally unstable disks — are indicated by arrows.
B4INREMOTE-aHR0cHM6Ly8yLmJwLmJsb2dzcG90LmNvbS8tdC0zQ2wtdGlGYlkvVnJZdTlobmd1T0kvQUFBQUFBQUJMX2cvYnhEbW9Da2RWVWMvczY0MC8xMDgzNzdfd2ViLmpwZw==
Credit:  Copyright: Eduard Vorobyov, Universität Wien

With the advent of advanced observational instruments, such as SUBARU 8.2 meter optical-infrared telescope installed in Mauna Kea (Hawaii), it has become possible for the first time to test the model predictions. Using high-resolution, adaptive optics observations in the polarized light, an international group of astronomers led by Hauyu Liu from European Space Observatory (Garching, Germany) has verified the presence of the key features associated with the disk fragmentation model — large-scale arms and arcs surrounding four young stars undergoing luminous outbursts, including the prototype FU Orionis star itself. The results of this study were accepted for publication in Science Advances – a peer-review, open-access journal belonging to the Science publishing group.

“This is a major step towards our understanding of how stars and planets form and evolve”, says Vorobyov, “If we can prove that most stars undergo such episodes of brightening caused by disk gravitational instability, this would mean that our own Sun might have experienced several such episodes, implying that the giant planets of the Solar system may in fact be lucky survivors of the Sun’s tempestuous past”.

Contacts and sources: 

Eduard Vorobyov
Vienna University
 

Citation:  Hauyu Baobab Liu, Michihiro Takami, Tomoyuki Kudo, Jun Hashimoto, Ruobing Dong, Eduard I. Vorobyov, Tae-Soo Pyo, Misato Fukagawa, Motohide Tamura, Thomas Henning, Michael M. Dunham, Jennifer Karr, Nobuhiko Kusakabe, Toru Tsuribe: “Circumstellar Disks of the Most Vigorously Accreting Young Stars”, published online February 5, 2016. Publication in Science Advances  



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.