Online:
Visits:
Stories:
Profile image
By Alton Parrish (Reporter)
Contributor profile | More stories
Story Views

Now:
Last Hour:
Last 24 Hours:
Total:

Large Number of Dwarf Galaxies Discovered in the Early Universe

Monday, November 21, 2016 19:38
% of readers think this story is Fact. Add your two cents.

(Before It's News)

A team of researchers, led by University of California, Riverside astronomers, found for the first time a large population of distant dwarf galaxies that could reveal important details about a productive period of star formation in the universe billions of years ago.

The findings, just published in The Astrophysical Journal, build on a growing body of knowledge about dwarf galaxies, the smallest and dimmest galaxies in the universe. Though diminutive, they are incredibly important for understanding the history of the universe.

It is believed that dwarf galaxies played a significant role during the reionization era in transforming the early universe from being dark, neutral and opaque to one that is bright, ionized and transparent.

Massive cluster of galaxies Abell 1689 creates a strong gravitational effect on background and older galaxies, seen as arcs of light.

B4INREMOTE-aHR0cHM6Ly8yLmJwLmJsb2dzcG90LmNvbS8tNlR6YmhJRDZrek0vV0RPaTNHTnFGUkkvQUFBQUFBQUJRbzAvejRHdVlZWEVUcmNSckVzRXVsX0ZwWjE2X0c1OTljNF93Q0xjQi9zNjQwLzEyNzQ3Nl93ZWIuanBn
Credit: NASA, ESA, B. Siana, and A. Alavi

Despite their importance, distant dwarf galaxies remain elusive, because they are extremely faint and beyond the reach of even the best telescopes. This means that the current picture of the early universe is not complete.

However, there is a way around this limitation. As predicted by Einstein’s general theory of relativity, a massive object such as a galaxy located along the line of sight to another distant object, can act as a natural lens, magnifying the light coming from that background source.

This phenomenon, known as gravitational lensing, causes the background object to appear brighter and larger. Therefore, these natural telescopes can allow us to discover unseen distant dwarf galaxies.

As a proof of concept, in 2014, the UC Riverside team, including Brian Siana, an assistant professor in UC Riverside’s Department of Physics and Astronomy who is the principal investigator of the observing programs, targeted one cluster of galaxies that produce the gravitational lensing effect and got a glimpse of what appeared to be a large population of distant dwarf galaxies.

The just-published paper, whose lead author was Anahita Alavi, a post-doctoral scholar working with Siana, builds on that work.

The team used the Wide Field Camera 3 on the Hubble Space Telescope to take deep images of three clusters of galaxies. They found the large population of distant dwarf galaxies from when the universe was between two to six billion years old. This cosmic time is critical as it is the most productive time for star formation in the universe.

In addition, the team took advantage of the spectroscopic data from Multi-Object Spectrograph for Infrared Exploration (MOSFIRE) on the W.M. Keck Observatory, to confirm that the galaxies belonged to this important cosmic period.

These dwarf galaxies are 10 to 100 times fainter than galaxies that have been previously observed during these periods of time. Though faint, these galaxies are far more numerous than their brighter counterparts.

This study demonstrates that the number of these dwarf galaxies evolves during this important time period such that they are even more abundant at earlier times. Therefore, the researchers unveiled a population of dwarf galaxies that are the most numerous galaxies in the universe during these time periods.

Despite their faintness, these dwarf galaxies produce more than half of the ultraviolet light during this era. As ultraviolet radiation is produced by young hot stars, dwarf galaxies host a significant fraction of newly-formed stars at these cosmic times.

These results suggest that dwarf galaxies played a prominent role in the reionization era. These galaxies will be the primary targets of the next generation of telescopes, particularly the James Webb Space Telescope, scheduled to launch in October 2018.

:
Contacts and sources:
Sean Nealon
University of California, Riverside 

 

Citation: The paper, “The Evolution Of The Faint End Of The UV Luminosity Function During The Peak Epoch Of Star Formation (1 < z < 3),” is co-authored by Johan Richard (Université Lyon), Marc Rafelski (STScI), Mathilde Jauzac (Durham University), Marceau Limousin (Aix Marseille University), William R. Freeman (UC Riverside), Claudia Scarlata (Minnesota university), Brant Robertson (UC Santa Cruz), Daniel P. Stark (University of Arizona), Harry I. Teplitz (IPAC), Vandana Desai (IPAC).

BIN NOTE: If by now you haven’t figured out that Facebook and Google are in cahoots with the corrupt government, then I feel for you, but for those who are well aware of the issues it’s high time you switched over to Seen.life. It is a website that is similar to Facebook but without all the censorship.



Source:

Report abuse

Comments

Your Comments
Question   Razz  Sad   Evil  Exclaim  Smile  Redface  Biggrin  Surprised  Eek   Confused   Cool  LOL   Mad   Twisted  Rolleyes   Wink  Idea  Arrow  Neutral  Cry   Mr. Green

Top Stories
Recent Stories

Register

Newsletter

Email this story
Email this story

If you really want to ban this commenter, please write down the reason:

If you really want to disable all recommended stories, click on OK button. After that, you will be redirect to your options page.